Hey there!
MgCl₂
Find molar mass of magnesium chloride.
Mg: 1 x 24.305
Cl: 2 x 35.453
--------------------
95.211 grams
One mole of magnesium chloride has a mass of 95.211 grams.
We have 2.40 moles.
2.40 x 95.211 = 228.5
To 3 sig figs this is 229.
The mass of 2.40 moles of magnesium chloride is 229 grams.
Hope this helps!
Answer:
1. 31.25 mL
2. 1.98 g/L
3. 0.45 g/mL
Explanation:
For each of the problems, you need to perform unit conversions. You need to use the information given to you to convert to a specific unit.
1. You need volume (mL). You have density (g/mL) and mass (g). Divide mass by density. You will cancel out mL and be left with g.
(50.0 g)/(1.60 g/mL) = 31.25 mL
2. You are given grams and liters. You need to find density with units g/L. This means that you have to divide grams by liters.
(0.891 g)/(0.450 L) = 1.98 g/L
3. You have to find density again but this time with units g/mL. Divide the given mass by the volume.
(10.0 g)/(22.0 mL) = 0.45 g/mL
Answer:
The answer to your question is 27 g of Al
Explanation:
Data
mass of Al = ?
moles of Al₂O₃ = 0.5
The correct formula for the product is Al₂O₃
Balanced chemical reaction
4Al + 3O₂ ⇒ 2Al₂O₃
Process
1.- Calculate the molar mass of the product
Al₂O₃ = (27 x 2) + (16 x 3)
= 54 + 48
= 102 g
2.- Convert the moles of Al₂O₃ to grams
102 g ---------------- 1 mol
x ---------------- 0.5 moles
x = (0.5 x 102) / 1
x = 51 g of Al₂O₃
3.- Use proportions to calculate the mass of Al
4(27) g of Al --------------- 2(102) g of Al₂O₃
x --------------- 51 g
x = (51 x 4(27)) / 2(102)
x = 5508 / 204
x = 27 g of Al
Human activities have a tremendous impact on the carbon cycle. Burning fossil fuels, changing land use, and using limestone to make concrete all transfer significant quantities of carbon into the atmosphere. ... This extra carbon dioxide is lowering the ocean's pH, through a process called ocean acidification.
The contraction of the triceps muscle causes the arm to flex. The contraction of the triceps muscle causes the arm to extend. When added to the force of the biceps contracting it provides extra force to the ball.
The answer is A