X4O10
Let molar mass of X be y
molar mass = 4y + 10 x 16 = 4y+160
so, moles = 85.2 / (4y+160)
Moles of oxygen = 10 x [85.2 / (4y+160) ]
Mass of oxygen = 16 x 10 x [85.2 / (4y+160) ]
which is 48.0
so, 48 = 16 x 10 x [85.2 / (4y+160) ]
Solve the equation to get y.
y = 31
Answer:
The new volume of gas would be 30 L.
Explanation:
This is an example of a Combined Gas Laws problem.
Answer:
The equilibrium shifts to produce more reactants.
Explanation:
According to the Le- Chatelier principle,
At equilibrium state when stress is applied to the system, the system will behave in such a way to nullify the stress.
The equilibrium can be disturb,
By changing the concentration
By changing the volume
By changing the pressure
By changing the temperature
Consider the following chemical reaction.
Chemical reaction:
2SO₂ + O₂ ⇄ 2SO₃
In this reaction the equilibrium is disturb by increasing the concentration of Product.
When the concentration of product is increased the system will proceed in backward direction in order to regain the equilibrium. Because when product concentration is high it means reaction is not on equilibrium state. As the concentration of SO₃ increased the reaction proceed in backward direction to regain the equilibrium state and more reactant is formed.
Answer:
58.0 g of MgO
Explanation:
in a perfect world, 70 g, however we don't live in a perfect world
The equation of reaction
2Mg + O₂ --> 2MgO
first find which element is limiting:
35 g x 1 mol/24.3 g of Mg x 2 mol of MgO/ 2 mole of Mg = 1.44 moles of MgO
35 g x 1 mol/32g of Mg x 2 mol of MgO/ 1 mole of O₂ = 2.1875 moles of MgO
This means Mg is the limiting factor, so you will be using this moles to find grams of MgO
1.44 mols of MgO x 40.3 g of MgO/ 1 mol = 58.0 g of MgO
Neutralization reactions can be used in a laboratory setting in order t<span>o dispose of chemicals. When spills happens, for instance an acid is on the floor, you can use a base to neutralize the spill. Hope this answers the question. Have a nice day.</span>