The given question is incomplete. The complete question is:
How much heat is produced when 24.8 g of
is burned in excess oxygen gas
Given:
ΔH= −802 kJ.
Answer: 1243.1 kJ
Explanation:
Heat of combustion is the amount of heat released on complete combustion of 1 mole of substance.
Given :
Amount of heat released on combustion of 1 mole of methane = 802 kJ kJ/mol
According to avogadro's law, 1 mole of every substance occupies 22.4 L at NTP, weighs equal to the molecular mass and contains avogadro's number
of particles.
1 mole of
weighs = 16 g
Thus we can say:
16 g of
on combustion releases heat = 802 kJ
Thus 24.8 g of
on combustion releases =
Thus heat released when 24.8 g of methane is burned in excess oxygen gas is 1243.1 kJ
Answer:
because they devlop our organs
Answer: 0.0220275 M
Explanation:
So, we are given the following data or parameters which are going to help in solving this particular Question/problem.
=> Averagely, we have the volume = 5.0 L of blood in human body .
=> Mass of sugar eaten = 37.7 g of sugar (sucrose, 342.30 g/mol).
Therefore, the molarity of the blood sugar change can be calculated as below:
The molarity of the blood sugar change = (1/ volume) × mass/molar mass.
Thus, the molarity of the blood sugar change = (1/5) × 37.7/342.30 = 0.0220275 M.
The statement is true. The octet rule refers to the general rule of thumb wherein atoms of main-group elements tend to bond with other atoms in such a way that each atom possesses eight electrons (octet) in their valence shell. They tend to form the same electronic configuration as the noble gases. However, there are some exceptions to this rule. One of which is silane, SiH₄. A hydrogen atom only has 1 valence electron and needs another electron to complete its energy level. This is unlike other atoms, for example, carbon which has 4 valence electrons and needs to form 4 covalent bonds to fill its energy levels. Thus, 4 hydrogen atoms need only 4 more electrons. This is given by the silicon atom which has 4 valence electrons. Therefore, when a silicon atom is bonded to 4 hydrogen atoms, the resulting molecule, SiH₄, is a stable one.