The friction loss in the system is 3.480 kilowatts.
<h2>Procedure - Friction loss through a pump</h2><h2 /><h3>Pump model</h3><h3 />
Let suppose that the pump within a distribution system is an open system at steady state, whose mass and energy balances are shown below:
<h3>Mass balance</h3>
(1)
(2)
(3)
<h3>Energy balance</h3>
(4)
Where:
- Inlet mass flow, in kilograms per second.
- Outlet mass flow, in kilograms per second.
- Inlet volume flow, in cubic meters per second.
- Outlet volume flow, in cubic meters per second.
- Inlet specific volume, in cubic meters per kilogram.
- Outlet specific volume, in cubic meters per kilogram.
- Pump efficiency, no unit.
- Electric motor power, in kilowatts.
- Inlet specific enthalpy, in kilojoules per kilogram.
- Outlet specific enthalpy, in kilojoules per kilogram.
- Work losses due to friction, in kilowatts.
<h3>Data from steam tables</h3>
From steam tables we get the following water properties at inlet and outlet:
Inlet
,
,
,
, Subcooled liquid
Outlet
,
,
,
, Subcooled liquid
<h3>Calculation of the friction loss in the system</h3>
If we know that
,
,
,
,
and
, then the friction loss in the system is:


The friction loss in the system is 3.480 kilowatts. 
To learn more on pumps, we kindly invite to check this verified question: brainly.com/question/544887
Answer:
5 microhenries
Explanation:
The effective value of inductors in parallel "add" in the same way that resistors in parallel do. The value is the reciprocal of the sum of the reciprocals of the inductances that are in parallel.
10 uH ║ 10 uH = 5 uH
The effective inductance is 5 uH.
Malleable and ductile
non metals like plastic also have other properties but can't be malleable and ductile so they r most valuable metallic properties
Explanation:
the 7th one answer is beacause mercury is bad at sharing electrons
the 8th one's answer is Rhodium