1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVEN [57.7K]
2 years ago
11

As you have learned, not all motor oils are the same. What are two things that make them different?.

Engineering
1 answer:
saul85 [17]2 years ago
5 0

Answer:

quality ingredients and exceeding industry standards

Explanation:

You might be interested in
A charge of +2.00 μC is at the origin and a charge of –3.00 μC is on the y axis at y = 40.0 cm . (a) What is the potential at po
Nimfa-mama [501]

a) Potential in A: -2700 V

b) Potential difference: -26,800 V

c) Work: 4.3\cdot 10^{-15} J

Explanation:

a)

The electric potential at a distance r from a single-point charge is given by:

V(r)=\frac{kq}{r}

where

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have a system of two charges, so the total potential at a certain point will be given by the algebraic sum of the two potentials.

Charge 1 is

q_1=+2.00\mu C=+2.00\cdot 10^{-6}C

and is located at the origin (x=0, y=0)

Charge 2 is

q_2=-3.00 \mu C=-3.00\cdot 10^{-6}C

and is located at (x=0, y = 0.40 m)

Point A is located at (x = 0.40 m, y = 0)

The distance of point A from charge 1 is

r_{1A}=0.40 m

So the potential due to charge 2 is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.40}=+4.50\cdot 10^4 V

The distance of point A from charge 2 is

r_{2A}=\sqrt{0.40^2+0.40^2}=0.566 m

So the potential due to charge 1 is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.566}=-4.77\cdot 10^4 V

Therefore, the net potential at point A is

V_A=V_1+V_2=+4.50\cdot 10^4 - 4.77\cdot 10^4=-2700 V

b)

Here we have to calculate the net potential at point B, located at

(x = 0.40 m, y = 0.30 m)

The distance of charge 1 from point B is

r_{1B}=\sqrt{(0.40)^2+(0.30)^2}=0.50 m

So the potential due to charge 1 at point B is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.50}=+3.60\cdot 10^4 V

The distance of charge 2 from point B is

r_{2B}=\sqrt{(0.40)^2+(0.40-0.30)^2}=0.412 m

So the potential due to charge 2 at point B is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.412}=-6.55\cdot 10^4 V

Therefore, the net potential at point B is

V_B=V_1+V_2=+3.60\cdot 10^4 -6.55\cdot 10^4 = -29,500 V

So the potential difference is

V_B-V_A=-29,500 V-(-2700 V)=-26,800 V

c)

The work required to move a charged particle across a potential difference is equal to its change of electric potential energy, and it is given by

W=q\Delta V

where

q is the charge of the particle

\Delta V is the potential difference

In this problem, we have:

q=-1.6\cdot 10^{-19}C is the charge of the electron

\Delta V=-26,800 V is the potential difference

Therefore, the work required on the electron is

W=(-1.6\cdot 10^{-19})(-26,800)=4.3\cdot 10^{-15} J

4 0
3 years ago
The state of plane strain on an element is:
balu736 [363]

Answer:

a. ε₁=-0.000317

   ε₂=0.000017

θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain =3.335 *10^-4

Associated average normal strain ε(avg) =150 *10^-6

θ = 31.71 or -58.29

Explanation:

\epsilon _{1,2} =\frac{\epsilon_x + \epsilon_y}{2}  \pm \sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\epsilon _{1,2} =\frac{-300 \times 10^{-6} + 0}{2}  \pm \sqrt{(\frac{-300 \times 10^{-6}+ 0}{2}) ^2 + (\frac{150 \times 10^-6}{2})^2}\\\\\epsilon _{1,2} = -150 \times 10^{-6}  \pm 1.67 \times 10^{-4}

ε₁=-0.000317

ε₂=0.000017

To determine the orientation of ε₁ and ε₂

tan 2 \theta_p = \frac{\gamma_xy}{\epsilon_x - \epsilon_y} \\\\tan 2 \theta_p = \frac{150 \times 10^{-6}}{-300 \times 10^{-6}-\ 0}\\\\tan 2 \theta_p = -0.5

θ= -13.28° and  76.72°

To determine the direction of ε₁ and ε₂

\epsilon _{x' }=\frac{\epsilon_x + \epsilon_y}{2}  + \frac{\epsilon_x -\epsilon_y}{2} cos2\theta  + \frac{\gamma_xy}{2}sin2\theta \\\\\epsilon _{x'} =\frac{-300 \times 10^{-6}+ \ 0}{2}  + \frac{-300 \times 10^{-6} -\ 0}{2} cos(-26.56)  + \frac{150 \times 10^{-6}}{2}sin(-26.56)\\\\

=-0.000284 -0.0000335 = -0.000317 =ε₁

Therefore θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain

\gamma_{max \ in \ plane} =2\sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\gamma_{max \ in \ plane} = 2\sqrt{(\frac{-300 *10^{-6} + 0}{2} )^2 + (\frac{150 *10^{-6}}{2})^2}

=3.335 *10^-4

\epsilon_{avg} =(\frac{\epsilon_x + \epsilon_y}{2} )

ε(avg) =150 *10^-6

orientation of γmax

tan 2 \theta_s = \frac{-(\epsilon_x - \epsilon_y)}{\gamma_xy} \\\\tan 2 \theta_s = \frac{-(-300*10^{-6} - 0)}{150*10^{-6}}

θ = 31.71 or -58.29

To determine the direction of γmax

\gamma _{x'y' }=  - \frac{\epsilon_x -\epsilon_y}{2} sin2\theta  + \frac{\gamma_xy}{2}cos2\theta \\\\\gamma _{x'y' }=  - \frac{-300*10^{-6} - \ 0}{2} sin(63.42)  + \frac{150*10^{-6}}{2}cos(63.42)

= 1.67 *10^-4

4 0
4 years ago
Consider two Carnot heat engines operating in series. The first engine receives heat from the reservoir at 1400 K and rejects th
Aleksandr-060686 [28]

Answer:

The temperature T= 648.07k

Explanation:

T1=input temperature of the first heat engine =1400k

T=output temperature of the first heat engine and input temperature of the second heat engine= unknown

T3=output temperature of the second heat engine=300k

but carnot efficiency of heat engine =1 - \frac{Tl}{Th} \\

where Th =temperature at which the heat enters the engine

Tl is the  temperature of the environment

since both engines have the same thermal capacities <em>n_{th} </em> therefore n_{th} =n_{th1} =n_{th2}\\n_{th }=1-\frac{T1}{T}=1-\frac{T}{T3}\\ \\= 1-\frac{1400}{T}=1-\frac{T}{300}\\

We have now that

\frac{-1400}{T}+\frac{T}{300}=0\\

multiplying through by T

-1400 + \frac{T^{2} }{300}=0\\

multiplying through by 300

-420000+ T^{2} =0\\T^2 =420000\\\sqrt{T2}=\sqrt{420000}  \\T=648.07k

The temperature T= 648.07k

5 0
3 years ago
A reversible compression of 1 mol of an ideal gas in a piston/cylinder device results in a pressure increase from 1 bar to P2 an
Mashutka [201]

Answer:

attached below

Explanation:

6 0
3 years ago
4. The instant the ignition switch is turned to the start position,
geniusboy [140]

Answer:

D. Both pull-in and hold-in windings are energized.

Explanation:

The instant the ignition switch is turned to the start position, "Both pull-in and hold-in windings are energized." This is because the moment the ignition switch is turned to the start position, voltage passes through to the S terminal of the solenoid.

The hold-in winding is attached to the case of the solenoid. Similarly, the pull-in winding is also attached to the starter motor. Thereby, the current will move across both windings by getting energized to generate a strong magnetic field.

4 0
3 years ago
Other questions:
  • At the instant shown, slider block B is moving with a constant acceleration, and its speed is 150 mm/s. Knowing that after slide
    13·1 answer
  • I don't understand this I am really bad at measurements
    12·2 answers
  • ممكن الحل ............
    10·1 answer
  • A spherical tank for storing gas under pressure is 25 m in diameter and is made of steel 15 mm thick. The yield point of the mat
    5·2 answers
  • Reusable refrigerant containers under high-pressure must be hydrostatically tested how often?
    10·1 answer
  • For methyl chloride at 100°C the second and third virial coefficients are: B = −242.5 cm 3 ·mol −1 C = 25,200 cm 6 ·mol −2 Calcu
    7·1 answer
  • A 40kg steel casting (Cp=0.5kJkg-1K-1) at a temperature of 4500C is quenched in 150kg of oil (Cp=2.5kJkg-1K-1) at 250C. If there
    13·1 answer
  • Find the dryness fraction, specific volume and internal energy of steam at 7bar nd enthalpy 2600kj/kh. (0.921,0.2515m³/kg , 2420
    5·1 answer
  • what do you expect the future trends of an operating system in terms of (a) cost (b) size (c) multitasking (d) portability (e) s
    12·1 answer
  • If a population has no predadors and plenty of available resources, how might that population change
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!