I think it would be better control of fusion reactions.
Use the following equations to fill the chart.
E = hf
where
h = 6.63 x 10⁻³⁴ J/s, Planck's constant
f = frequency Hz
E = quanta of energy, J
c = fλ
where
c = 3 x 10⁸ m/s, the velocity of light
λ = wavelength, m
If energy is given in J/mmol, divide by Avogadro's number, N = 6.02 x 10²³, to convert it to J.
The completed table is shown below.
Answer:
Space junk is travelling so fast that a collision with an astronaut or a spacecraft could be disastrous.
Explanation:
Space junk orbits the Earth at speeds of about 28 000 km/h.
That's so fast that even an orbiting fleck of paint has enough kinetic energy to cause impact craters on the surface of a spacecraft. They are even more dangerous to an astronaut on a space walk.
Much of the space debris is larger and more dangerous than a fleck of paint.
One rough estimate of the amount of space debris is
<em> </em><u>Size</u><em> </em> <u>Number of objects</u>
< 1 cm 200 000 000
1 cm to 10 cm 700 000
> 10 cm 30 000
Satellites, etc. 18 000
The chances of collision are small, but any collision can be disastrous.
Answer:
B
Explanation:
u do the math and you will get the answer
The chemical reaction that the situation demonstrates would be a double replacement reaction.
In double replacement reactions, the two reactants participating in the reaction are similarly built in terms of their chemical bonds and they exchange ions to form the products of the reaction. Two products are also formed from the two reactants.
It is as opposed to single replacement reactions in which the two reactants are not similar bond-wise. One of the reactants replaces or displaces one of the ions in another reactant.
In this case, the situation can be represented as follows:
Amanda-Janice + Deja-Eden ----> Amanda-Eden + Deja-Janice
Thus, it is a form of double replacement reaction.
More on double replacement reactions can be found here: brainly.com/question/392491?referrer=searchResults