Answer:
Explanation:
Moles of
= 1 mole
Moles of
= 1 mole
Volume of solution = 1 L
Initial concentration of
= 1 M
Initial concentration of
= 1 M
The given balanced equilibrium reaction is,

Initial conc. 1 M 0M 1 M
At eqm. conc. (1-2x) M (2x) M (1+x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[NO]^2[Cl_2]}{[NOCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO%5D%5E2%5BCl_2%5D%7D%7B%5BNOCl%5D%5E2%7D)
The
= 
Now put all the given values in this expression, we get :

By solving the term 'x', we get :

Concentration of
at equilibrium= (2x) M =
2H2S+2SO2 》》 4S+2H2O hope that'll help u
They are also called the noble gases or inert gases. They
are virtually unreactive towards other elements or compounds. They are found in
trace amounts in the atmosphere. Their elemental form at room temperature is
colorless, odorless and monatomic gases. They also have full octet of eight
valence electrons in their highest orbitals so they have a very little tendency
to gain or lose electrons to form ions or share electrons with other elements
in covalent bonds.
We convert the masses of our reactants to moles and use the stoichiometric coefficients to determine which one of our reactants will be limiting.
Dividing the mass of each reactant by its molar mass:
(10 g C2H6)(30.069 g/mol) = 0.3326 mol C2H6
(10 g O2)(31.999 g/mol) = 0.3125 mol O2.
Every 2 moles of C2H6 react with 7 moles of O2. So the number of moles of O2 needed to react completely with 0.3326 mol C2H6 would be (0.3326)(7/2) = 1.164 mol O2. That is far more than the number of moles of O2 that we are given: 0.3125 moles. Thus, O2 is our limiting reactant.
Since O2 is the limiting reactant, its quantity will determine how much of each product is formed. We are asked to find the number of grams (the mass) of H2O produced. The molar ratio between H2O and O2 per the balanced equation is 6:7. That is, for every 6 moles of H2O that is produced, 7 moles of O2 is used up (intuitively, then, the number of moles of H2O produced should be less than the number of moles of O2 consumed).
So, the number of moles of H2O produced would be (0.3125 mol O2)(6 mol H2O/7 mol O2) = 0.2679 mol H2O. We multiply by the molar mass of H2O to convert moles to mass: (0.2679 mol H2O)(18.0153 g/mol) = 4.826 g H2O.
Given 10 grams of C2H6 and 10 grams of O2, 4.826 g of H2O are produced.
The correct statement to fill the blank would be the first option. Atomic energy is the energy in the nucleus of an atom of electrons and their shells. From the word atomic itself, we can say that this energy is energy within and carried by the atoms.