Answer:
B. 6 cm
Explanation:
First, we calculate the spring constant of a single spring:

where,
k = spring constant of single spring = ?
F = Force Applied = 10 N
Δx = extension = 4 cm = 0.04 m
Therefore,

Now, the equivalent resistance of two springs connected in parallel, as shown in the diagram, will be:

For a load of 30 N, applying Hooke's Law:

Hence, the correct option is:
<u>B. 6 cm</u>
Answer:
the claim is not valid or reasonable.
Explanation:
In order to test the claim we will find the maximum and actual efficiencies. maximum efficiency of a heat engine can be found as:
η(max) = 1 - T₁/T₂
where,
η(max) = maximum efficiency = ?
T₁ = Sink Temperature = 300 K
T₂ = Source Temperature = 400 K
Therefore,
η(max) = 1 - 300 K/400 K
η(max) = 0.25 = 25%
Now, we calculate the actual frequency of the engine:
η = W/Q
where,
W = Net Work = 250 KJ
Q = Heat Received = 750 KJ
Therefore,
η = 250 KJ/750 KJ
η = 0.333 = 33.3 %
η > η(max)
The actual efficiency of a heat engine can never be greater than its Carnot efficiency or the maximum efficiency.
<u>Therefore, the claim is not valid or reasonable.</u>
Answer:
Given a set of vectors, you can determine if they are linearly independent by writing the vectors as the columns of the matrix A, and solving Ax = 0.
Explanation:
Answer:
Proof in explanataion
Explanation:
The basic dimensions are as follows:
MASS = M
LENGTH = L
TIME = T
i)
Given equation is:

where,
H = height (meters)
u = speed (m/s)
g = acceleration due to gravity (m/s²)
Sin Ф = constant (no unit)
So there dimensions will be:
H = [L]
u = [LT⁻¹]
g = [LT⁻²]
Sin Ф = no dimension
Therefore,
![[L] = \frac{[LT^{-1}]^2}{[LT^{-2}]}\\\\\ [L] = [L^{(2-1)}T^{(-2+2)}]](https://tex.z-dn.net/?f=%5BL%5D%20%3D%20%5Cfrac%7B%5BLT%5E%7B-1%7D%5D%5E2%7D%7B%5BLT%5E%7B-2%7D%5D%7D%5C%5C%5C%5C%5C%20%5BL%5D%20%3D%20%5BL%5E%7B%282-1%29%7DT%5E%7B%28-2%2B2%29%7D%5D)
<u>[L] = [L]</u>
Hence, the equation is proven to be homogenous.
ii)

where,
F = Force = Newton = kg.m/s² = [MLT⁻²]
G = Gravitational Constant = N.m²/kg² = (kg.m/s²)m²/kg² = m³/kg.s²
G = [M⁻¹L³T⁻²]
m₁ = m₂ = mass = kg = [M]
r = distance = m = [L]
Therefore,
![[MLT^{-2}] = \frac{[M^{-1}L^{3}T^{-2}][M][M]}{[L]^2}\\\\\ [MLT^{-2}] = [M^{(-1+1+1)}L^{(3-2)}T^{-2}]\\\\](https://tex.z-dn.net/?f=%5BMLT%5E%7B-2%7D%5D%20%3D%20%5Cfrac%7B%5BM%5E%7B-1%7DL%5E%7B3%7DT%5E%7B-2%7D%5D%5BM%5D%5BM%5D%7D%7B%5BL%5D%5E2%7D%5C%5C%5C%5C%5C%20%5BMLT%5E%7B-2%7D%5D%20%3D%20%5BM%5E%7B%28-1%2B1%2B1%29%7DL%5E%7B%283-2%29%7DT%5E%7B-2%7D%5D%5C%5C%5C%5C)
<u>[MLT⁻²] = [MLT⁻²]</u>
Hence, the equation is proven to be homogenous.
Answer:
For empiricists like van Fraassen, the phenomena of physics are the appearances observed or perceived by sensory experience. Constructivists, however, regard the phenomena of physics as artificial structures generated by experimental and mathematical methods.