Answer:
312 g of O₂
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2KClO₃ —> 2KCl + 3O₂
From the balanced equation above,
2 mole of KClO₃ decomposed to 3 moles of O₂.
Next, we shall determine the number of mole of O₂ produced by the reaction of 6.5 moles of KClO₃. This can be obtained as follow:
From the balanced equation above,
2 mole of KClO₃ decomposed to 3 moles of O₂.
Therefore, 6.5 moles of KClO₃ will decompose to produce = (6.5 × 3)/2 = 9.75 moles of O₂.
Finally, we shall determine the mass of 9.75 moles of O₂. This can be obtained as follow:
Mole of O₂ = 9.75 moles
Molar mass of O₂ = 2 × 16 = 32 g/mol
Mass of O₂ =?
Mole = mass / Molar mass
9.75 = Mass of O₂ / 32
Cross multiply
Mass of O₂ = 9.75 × 32
Mass of O₂ = 312 g
Thus, 312 g of O₂ were obtained from the reaction.
Https://www.youtube.com/watch?v=7ZtLaCucV98
Answer:
Explanation:
Such types of compounds in which conjugated planer ring system and delocalized pi electrons are present are called aromatic compounds such as Toluene, Benzene and some other. Generally, these compounds follow Huckle's rule. The trisubstituted ring means a compound in which three hydrogen atoms are replaced by three other groups. In the given compound two hydrogen atoms are replaced by two methyl groups and one hydrogen atom is replaced by one Chlorine atom. From the given compound , and can be drawn.
Here you go! There are 0.9307 moles in 123.0 g of the compound. I solved this by using a fence post method. I calculated the number of grams in one mol of (NH4)2 SO4 and got 132.16.
I did this by finding the atomic mass of each element on the periodic table (my work is in the color blue for this step)
After that, i divided the given mass by the mass of one mol of the compound.
The answer is 0.9307 moles!! I hope this helped you! :))