Answer
Explanation:
so the velocity is 39 feet per sec so the impact is 720 cm from the ground
take 720 * 39 sq
Answer:
Product Teardown 28 pieces (1) Plastic packaging: protect and display product for purchase. (4) Exterior screws: hold case halves together. (1) Right case half: acts as part of a handle and contains the rest of the parts. (1) Left case half: acts as part of a handle and contains the rest of the parts.
Explanation:
A product teardown process is an orderly way to know about a particular product and identify its parts, system functionality to recognize modeling improvement and identify cost reduction opportunities. Unlike the traditional costing method, tear down analysis collects information to determine product quality and price desired by the consumers.
- The conversion of 47,000 Ohms to kilo-ohms is equal to 47 kilo-ohms.
- The conversion of 47,000 Ohms to mega-ohms is equal to 0.047 kilo-ohms.
<h3>What is
resistance?</h3>
Resistance can be defined as an opposition to the flow of current in an electric circuit. Also, the standard unit of measurement of the resistance of an electric component is Ohms, which can be converted to kilo-ohms or mega-ohms.
For Ohms to kilo-ohms, we have:
1 Ohms = 0.001 kilo-ohms
47,000 Ohms = X kilo-ohms
Cross-multiplying, we have:
X = 0.001 × 47000
X = 47 kilo-ohms.
For Ohms to mega-ohms, we have:
1,000,000 ohms = 1 mega-ohms
47,000 Ohms = X mega-ohms
Cross-multiplying, we have:
X1,000,000 = 47,000
X = 47,000/1,000,000
X = 0.047 kilo-ohms.
Read more resistance here: brainly.com/question/19582164
#SPJ1
Image of wheel is missing, so i attached it.
Answer:
ω = 14.95 rad/s
Explanation:
We are given;
Mass of wheel; m = 20kg
T = 20 N
k_o = 0.3 m
Since the wheel starts from rest, T1 = 0.
The mass moment of inertia of the wheel about point O is;
I_o = m(k_o)²
I_o = 20 * (0.3)²
I_o = 1.8 kg.m²
So, T2 = ½•I_o•ω²
T2 = ½ × 1.8 × ω²
T2 = 0.9ω²
Looking at the image of the wheel, it's clear that only T does the work.
Thus, distance is;
s_t = θr
Since 4 revolutions,
s_t = 4(2π) × 0.4
s_t = 3.2π
So, Energy expended = Force x Distance
Wt = T x s_t = 20 × 3.2π = 64π J
Using principle of work-energy, we have;
T1 + W = T2
Plugging in the relevant values, we have;
0 + 64π = 0.9ω²
0.9ω² = 64π
ω² = 64π/0.9
ω = √64π/0.9
ω = 14.95 rad/s