Answer:
photoelectric effect
Explanation:
When the energy from photons is absorbed by matter, the matter can emit electrons. This process is called the photoelectric effect. The photoelectric effect is a property of light that is not explained by the theory that light is a wave.
Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.
Answer:
I should be active for 15 hours to meet the physical activity requirement.
Explanation:
Since time dilates in moving objects, we use the formula t = t₀/√(1 - β²) where t = time in space vehicle, t₀ = time on earth = 9 hours and β = v/c where v = speed of space vehicle = 0.8c.
So, t = t₀/√(1 - β²)
t = 9/√(1 - (v/c)²)
= 9/√(1 - (0.8c/c)²)
= 9/√(1 - (0.8)²)
= 9/√(1 - (0.64)
= 9/√0.36
= 9/0.6
= 15 hr
So, according to a timer on the space vehicle, I should be active for 15 hours to meet the physical activity requirement.
Yes, an increase in temperature is accompanied by an increase in pressure. Temperature is the measurement of heat present and more heat means more energy. Molecules in hotter temperatures move faster and more often, eventually moving into the gaseous phase. The molecules would fill the container, and the hotter it got the more they would bounce off the walls, pushing outward, increasing the pressure.
I suppose you could measure this with some kind of loosely inflated balloon and subject it to different temperatures and then somehow measure the size/pressure of it.
This is a great problem if you like getting tied up in knots
and making smoke come out of your brain.
I found that it makes the problem a lot easier if I give the objects some
numbers. I'm going to say that the mass of Object 5 is 20 clods.
Let the mass of Mass of Object 5 be 20 clods .
Then . . .
-- The mass of Object 2 is double the mass of Object 5 = 40 clods.
-- The mass of Object 4 is half of the mass of Object 5 = 10 clods.
and
-- the mass of Object 3 is half of the mass of Object 4 = 5 clods.
So now, here are the masses:
Object #1 . . . . . unknown
Object #2 . . . . . 40 clods
Object #3 . . . . . 5 clods
Object #4 . . . . . 10 clods
Object #5 . . . . . 20 clods .
Now let's check out the statements, and see how they stack up:
Choice-A:
Object 3 and Object 5 exert the same gravitational force on Object 1.
Can't be.
Objects #3 and #5 have different masses, so they can't both
exert the same force on the same mass.
Choice-B.
Object 2 and Object 4 exert the same gravitational force on Object 1.
Can't be.
Objects #2 and #4 have different masses, so they can't both
exert the same force on the same mass.
Choice-C.
The gravitational force between Object 1 and Object 2 is greater than
the gravitational force between Object 1 and Object 4.
Yes ! Yay !
Object-2 has more mass than Object-4 has, so it must exert more force on
ANYTHING than Object-4 does, (as long as the distances are the same).
Choice-D.
The gravitational force between Object 1 and Object 3 is greater than the gravitational force between Object 1 and Object 5.
Can't be.
Object-3 has less mass than Object-5 has, so it must exert less force on
ANYTHING than Object-4 does, (as long as the distances are the same).
Conclusion:
If the DISTANCE is the same for all the tests, then Choice-C is
the only one that can be true.