Answer:
Doubling the voltage in this arrangement both doubles the voltage drop across the resistor and the current through it. The bulb will be much brighter.
Answer:
I hear points of low volume sound and points of high volume of sound.
Explanation:
This is because, since the two sources of sound have the same frequency and are separated by a distance, d = 10 mm, there would be successive points of constructive and destructive interference.
Since their frequencies are similar, we should have beats of high and low frequency.
So, at points of low frequency, the amplitude of the wave is smallest and there is destructive interference. The frequency at this point is the difference between the frequencies from both speakers. Since the frequency from both speakers is 400 Hz, we have, f - f' = 400 Hz - 400 Hz = 0 Hz. So, the volume of the sound is low(zero) at these points.
Also, at points of high frequency, the amplitude of the wave is highest and there is constructive interference. The frequency at this point is the sum between the frequencies from both speakers. Since the frequency from both speakers is 400 Hz, we have, (f + f') = 400 Hz + 400 Hz = 800 Hz. So, the volume of the sound is high at these points.
So, as you wander around the room, I should hear points of high and low sound across the room.
I'm not sure but I had this question on a benchmark I think its the density of the wire you need to find the density or the mass I'm not sure but i do remember this question
First, create an illustration of the motion of the two cars as shown in the attached picture. The essential equations used is
For constant acceleration:
a = v,final - v,initial /t
The solutions is as follows:
a = v,final - v,initial /t
3.8 = (v - 0)/2.8 s
v = 10.64 m/s After 2.8 seconds, the speed of the blue car is 10.64 m/s.
Given :
The ball of a ballpoint pen is 0.5 mm in diameter and has an ASTM grain size of 12.
To Find :
How many grains are there in the ball?
Solution :
Volume of ball of the ballpoint is :

Now, grain size of 12 has about 520000 grains/mm³.
Therefore, number of grains are :
