Answer:
Change/ Potential
Explanation:
Work is the amount of energy required to perform an action that is for a force to cause a displacement.
From work-energy theorem, work done by body is equal to change in its kinetic energy.
Work of gravity is basically the potential energy stored in the body due to gravity. From the law of conservation of mechanical energy, increased kinetic energy comes from the change of the potential energy of the stone.
Answer:
change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
Explanation:
Let's look for the speed of the car
F = m a
a = F / m
We use kinematics to find lips
v = v₀ + a t
v = v₀ + (F / m) t
The moment is defined by
p = m v
The moment change
Δp = m v - m v₀
Let's replace the speeds in this equation
Δp = m (v₀
+ F / m t) - m v₀
Δp = m v₀ + F t - m v₀
Δp = F t
We see that the change of momentum does not depend on the mass of the cars, as the force and time are the same all vehicles have the same change of momentum
Answer:
1.06 secs
Explanation:
Initial speed of sled, u = 8.4 m/s
Final speed of sled, v = 5.8 m/s
Coefficient of kinetic friction, μ = 0.25
Using the impulse momentum theory, we know that the impulse applied to the sled is equal to change in momentum of the sled:
FΔt = mv - mu
where m = mass of the object
Δt = time interval
F = force applied
The force applied on the sled is the frictional force, which is given as:
F = -μmg
where g = acceleration due to gravity
Therefore:
-μmgΔt = mv - mu
-μmgΔt = m(v - u)
-μgΔt = v - u
Making Δt subject of formula:
Δt = (v - u) / -μg
Δt = (5.8 - 8.4) / (-0.25 * 9.8)
Δt = -2.6/ -2.45
Δt = 1.06 secs
It took the sled 1.06 secs to travel from A to B.
A high tide means when the water has risen and is higher up(closer to high up land). Low tide is when it’s receded
Answer:
A- mass and type of material
B- type of material
C- Temperature
Explanation:
thx