1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
asambeis [7]
3 years ago
12

If you bring a charged object near an electrically neutral surface without allowing the object to touch the surface, the charges

in the surface are rearranged by________.
Physics
2 answers:
Naddika [18.5K]3 years ago
6 0
Heat or gasses you should insert a picture
nordsb [41]3 years ago
6 0
Induction is your answer
You might be interested in
The best scientific reason for a scientist to accept a specific theory is?
lions [1.4K]

Answer:

The theory is supported by all the available observations and data.

Explanation: The scientific community will accept a theory when a sufficient body of evidence supports it. This includes experiments that refute other potential theories. Experiments should also be carried out that attempt to disprove the theory but cannot.

It should not matter who proposed the theory or who supports it, and instead should entirely be based on the quality and abundance of data supporting it.

Hope this helps!

Pls Mark me brainliest

-ya girl Lizzie

7 0
3 years ago
A dentist uses a concave mirror (focal length 2.5 cm) to examine some teeth. If the distance from the object to the mirror is 1.
AysviL [449]

Answer:

2.28

Explanation:

From mirror formula,

1/f = 1/u+1/v .......... Equation 1

Where f = focal length of the mirror, v = image distance, u = object distance.

Note: The focal length mirror is positive.

make v the subject of the equation,

v = fu/(u-f)............ Equation 2

Given: f = 2.5 cm, u = 1.4 cm

Substitute into equation 2

v = 2.5(1.4)/(1.4-2.5)

v = 3.5/-1.1

v = -3.2 cm.

Note: v is negative because it is a virtual image.

But,

Magnification = image distance/object distance

M = v/u

Where M = magnification.

Given: v = 3.2 cm, u = 1.4 cm

M = 3.2/1.4

M = 2.28.

Thus the magnification of the tooth = 2.28.

3 0
3 years ago
A physics professor is pushed up a ramp inclined upward at 30.0° above the horizontal as she sits in her desk chair, which slide
11111nata11111 [884]

Answer:

V = 3.17 m/s

Explanation:

Given

Mass of the professor m = 85.0 kg

Angle of the ramp θ = 30.0°

Length travelled L = 2.50 m

Force applied F = 600 N

Initial Speed  u = 2.00 m/s

Solution

Work = Change in kinetic energy

F_{net}d = \frac{1}{2}mv^{2} - \frac{1}{2}mu^{2}\\\frac{2F_{net}d }{m} = v^{2} -u^{2}\\ v^{2} =\frac{2F_{net}d }{m} +u^{2}\\ v^{2} =\frac{2(600cos30 - 85\times 9.8 \times sin30) \times 2.5 }{85} +2.00^{2}\\ v^{2} = 10.066\\v = 3..17m/s

7 0
3 years ago
The amount of energy necessary to remove an electron from an atom is a quantity called the ionization energy, Ei. This energy ca
Verizon [17]

Answer:

The value is E_i  =  1.5596 *10^{-18} \  J

Explanation:

From the question we are told that

The wavelength is \lambda  =  48.2 nm  =  48.2  *10^{- 9 }\  m

The velocity is v = 2.371*10^6 \ m/s

The mass of electron is m_e  =  9.109*10^{-31} \  kg

Generally the energy of the incident light is mathematically represented as

E =  \frac{h *  c}{\lambda}

Here c is the speed of light with value c =  3.0 *10^{8} \  m/s

h is the Planck constant with value h = 6.62607015 *  10^{-34 }  J\cdot s

So

E =  \frac{6.62607015 *  10^{-34 }* 3.0 *10^{8}}{48.2  *10^{- 9 }}

=> E = 4.12 *10^{-18} \  J

Generally the kinetic energy is mathematically represented as

E_k  =  \frac{1}{2} *  m_e * v^2

=> E_k  =  \frac{1}{2} *  9.109*10^{-31} * (2.371*10^6 )^2

=> E_k  =  2.56 *0^{-18} \  J

Generally the ionization energy is mathematically represented as

E_i  =  4.12 *10^{-18} -   2.56 *0^{-18}

=>     E_i  =  1.5596 *10^{-18} \  J

7 0
3 years ago
A 594 Ω resistor, an uncharged 1.3 μF capacitor, and a 6.53 V emf are connected in series. What is the current in milliamps afte
ivanzaharov [21]

Answer:

6.88 mA

Explanation:

Given:

Resistance, R = 594 Ω

Capacitance = 1.3 μF

emf, V = 6.53 V

Time, t = 1 time constant

Now,

The initial current, I₀ = \frac{\textup{V}}{\textup{R}}

or

I₀ = \frac{\textup{6.53}}{\textup{594}}

or

I₀ = 0.0109 A

also,

I = I_0[1-e^{-\frac{t}{\tau}}]

here,

τ = time constant

e = 2.717

on substituting the respective values, we get

I = 0.0109[1-e^{-\frac{\tau}{\tau}}]

or

I = 0.0109[1-2.717^{-1}]

or

I = 0.00688 A

or

I = 6.88 mA

5 0
3 years ago
Other questions:
  • If the near-point distance of the jeweler is 22.0 cm, and the focal length of the magnifying glass is 7.70 cm, find the angular
    5·1 answer
  • Water is a fluid, all fluids
    13·1 answer
  • A lawyer drives from her​ home, located 1 mile east and 8 miles north of the town​ courthouse, to her​ office, located 4 miles w
    8·1 answer
  • You’ll get 100 points for answering this quick question
    15·2 answers
  • The election of 2008 had a record-breaking number of voters. It had the highest percentage of eligible voters voting in more tha
    8·1 answer
  • A ball is thrown horizontally from a 20-m-high building with a speed of 5.0m/s
    11·1 answer
  • Fibanachi's racio. What is it?
    5·1 answer
  • Which sI units are combined to describe force?
    12·2 answers
  • Which produces more energy? Nuclear fission or nuclear fission?
    9·1 answer
  • What is voltage current and resistence ?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!