Answer:
The rate constant of the reaction at 125˚ is
.
Explanation:
The Arrhenius equation is a simple equation that describes the dependent relationship between temperature and the rate constant of a chemical reaction. The Arrhenius equation is written mathematically as


where
is the rate constant,
represents the activation energy of the chemical reaction,
is the gas constant,
is the temperature, and
is the frequency factor.
The frequency factor,
, is a constant that is derived experimentally and numerically that describes the frequency of molecular collisions and their orientation which varies slightly with temperature but this can be assumed to be constant across a small range of temperatures.
Consider that the rate constant be
at an initial temperature
and the rate constant
at a final temperature
, thus


Given that
,
,
,
, and
, therefore,
Answer:
T = 100.63 °C
Explanation:
To solve this question, we need to know what are we talking about here. In this case, we want to know the boiling point of a solution with Urea in water. This is a colligative property, so, the expression to use to calculate that is the following:
ΔT = m * K / MM * kg water (1)
Where:
ΔT: difference of temperatures (Tb of solution - Tb water)
m: mass of the urea
K: ebulloscopic constant of the water (0.52 ° C / m)
MM: molecular mass of urea
The boiling point of water is 100 °C, we have the mass of the urea, but not the molar mass. The urea has the formula CH₄N₂O, so the molar mass can be calculated using the atomic mass of the elements (I will use a rounded number for this):
MM = 12 + (4*1) + (2*14) + 16 = 60 g/mol
Now, we can calculate the ΔT and then, the boiling point of the solution:
ΔT = 12 * 0.52 / 60 * 0.165
ΔT = 6.24 / 9.9
ΔT = 0.63 °C
the value of ΔT is a difference between the boling point of water and the solution so:
ΔT = Ts - Tw
Ts = ΔT + Tw
Replacing we have:
Ts = 100 + 0.63
<h2>
Ts = 100.63 ° C</h2>
Answer:
5 atoms of hydrogen will be found in the products
Explanation:
5 atoms of hydrogen will be found in the products becuase the law of conservation of mass states that mass is neither created nor destroyed in chemical reactions.
Http://chemistry.about.com/od/chemistryterminology/a/What-Is-The-Difference-Between-Molarity-And-Mol...