0.050 litres of the water will be required to make a 3.91 M solution with 0.196 moles in it.
Explanation:
Data given:
moles of Cd
= 0.196 Moles
Molarity of the solution = 3.91 M
Volume in litres =?
molarity is calculated by the formula:
molarity = 
putting the values in the above formula and rearranging it for volume:
volume = 
volume = 
volume = 0.050 litres
0.050 litres of the water will be required to make a 3.91 M solution with 0.196 moles in it.
Molarity is the number of moles present in a given volume of solution which is given in litres. It is the measurement of the concentration of particular solute in a solution.
Answer:
HNO3(aq) + OH-(aq) → NO3-(aq) + H2O(l)
Explanation:
According to Bronsted-Lowry theory, an acid is a substance that donates a proton (H+) and produces a conjugate base while a base is a molecule or ion which accepts the proton.
An example of Bronsted-Lowry acid and base is Nitric acid, HNO3 and hydroxide ion, OH- respectively as shown in the given reaction.
Thus, the nitric acid acts as an acid by donating a proton to the hydroxide ion which accepts it, thus producing nitrate ion, NO3- as a conjugate base, while OH- produces H2O as a conjugate acid.
The spaceship does not have any gravitational pull. A spaceship can not produce its own gravity like Earth does.
Answer:
The answer to your question is empirical formula Al₃O₉S
Explanation:
Data
Al = 31.5 %
O = 56.1 %
S = 12.4 %
Process
1.- Look for the atomic masses of the elements
Al = 27 g
O = 16
S = 32
2.- Represent the percentages as grams
Al = 31.5 g
O = 56.1 g
S = 12.4 g
3.- Convert these masses to moles
27 g of Al ----------------- 1 mol
31.5 g ---------------------- x
x = 1.17 moles
16 g of O ---------------- 1 mol
56.1 g of O ------------- x
x = 3.5 mol
32 g of S --------------- 1 mol
12.4 g of S ------------- x
x = 0.39 moles
4.- Divide by the lowest number of moles
Al = 1.17 / 0.39 = 3
O = 3.5 / 0.39 = 8.9 ≈ 9
S = 0.39 / 0.39 = 1
5.- Write the empirical equation
Al₃O₉S
Answer:
The reaction is exothermic and ΔH is negative
Explanation:
An exothermic reaction is a chemical reaction that releases energy in the form of heat. It is the opposite of an endothermic reaction in which energy is absorbed. It is expressed in a general thermochemical equation: reactants → products + energy.
We can know that a reaction is exothermic by observing the calorimeter to know if there is an increase in temperature. Remember that an exothermic reaction leads to evolution of heat. This is observed physically as a rise in temperature.
The calorimeter initially read 21.0 and finally read 38.8 at the end of the reaction. This implies that heat was given out in the process. The reaction is exothermic and ∆H is negative.