Hey There!
Here is your answer:
The answer is a compound machine!
Hope this helps!
Element: Boron
Symbol: B
So answer is B
Answer:
18.9 moles
Explanation:
We have the following data:
V = 50 L
P = 12.4 atm
T= 127°C + 273 = 400 K
R = 0.082 L.atm/K.mol (it is the gas constant)
We use the ideal gas equation to calculate the number of moles n of the gas:
PV = nRT
⇒ n = PV/RT = (12.4 atm x 50 L)/(0.082 L.atm/K.mol x 400 K) = 18.9 mol
<h3>The density of H₂ = 0.033 g/L</h3><h3>Further explanation</h3>
In general, the gas equation can be written

where
P = pressure, atm , N/m²
V = volume, liter
n = number of moles
R = gas constant = 0.082 l.atm / mol K (P= atm, v= liter),or 8,314 J/mol K (P=Pa or N/m², v= m³)
T = temperature, Kelvin
n = N / No
n = mole
No = Avogadro number (6.02.10²³)
n = m / MW
m = mass
MW = molecular weight
For density , can be formulated :

P = 327 mmHg = 0,430263 atm
R = 0.082 L.atm / mol K
T = 48 ºC = 321.15 K
MW of H₂ = 2.015 g/mol
The density :
