Answer:
Leg length
Explanation:
The distances from the root to the edges of the legs (toes) and the height of the crown are basic measurements.
Answer:
Tmax= 46.0 lb-in
Explanation:
Given:
- The diameter of the steel rod BC d1 = 0.25 in
- The diameter of the copper rod AB and CD d2 = 1 in
- Allowable shear stress of steel τ_s = 15ksi
- Allowable shear stress of copper τ_c = 12ksi
Find:
Find the torque T_max
Solution:
- The relation of allowable shear stress is given by:
τ = 16*T / pi*d^3
T = τ*pi*d^3 / 16
- Design Torque T for Copper rod:
T_c = τ_c*pi*d_c^3 / 16
T_c = 12*1000*pi*1^3 / 16
T_c = 2356.2 lb.in
- Design Torque T for Steel rod:
T_s = τ_s*pi*d_s^3 / 16
T_s = 15*1000*pi*0.25^3 / 16
T_s = 46.02 lb.in
- The design torque must conform to the allowable shear stress for both copper and steel. The maximum allowable would be:
T = min ( 2356.2 , 46.02 )
T = 46.02 lb-in
Answer:
0.08kg/s
Explanation:
For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.
The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.
finally you use the two previous equations to make a system and find the mass flows
I attached procedure
Answer:
The flux (volume of water per unit time) through the hoop will also double.
Explanation:
The flux = volume of water per unit time = flow rate of water through the hoop.
The Flow rate of water through the hoop is proportional to the area of the hoop, and the velocity of the water through the hoop.
This means that
Flow rate = AV
where A is the area of the hoop
V is the velocity of the water through the hoop
This flow rate = volume of water per unit time = Δv/Δt =Q
From all the above statements, we can say
Q = AV
From the equation, if we double the area, and the velocity of the stream of water through the hoop does not change, then, the volume of water per unit time will also double or we can say increases by a factor of 2
Answer:
If the turbulent velocity profile in a pipe of diameter 0.6 m may be approximated by u/U=(y/R)^(1/7), where u is in m/s and y is in m and 0.15 m from the pipe.
Explanation:
hope it helps