Answer:
The equation would be y = 5x - 15
Step-by-step explanation:
To find the equation to this line, we first have to note that parallel lines have the same slope. Since the original line has a slope of 5, we know that the new line will also have that slope. Then we can use the slope and the point in point-slope form and solve for y.
y - y1 = m(x - x1)
y - 5 = 5(x - 4)
y - 5 = 5x - 20
y = 5x - 15
The <span>given the piecewise function is :
</span>
![f(x) = \[ \begin{cases} 2x & x \ \textless \ 1 \\ 5 & x=1 \\ x^2 & x\ \textgreater \ 1 \end{cases} \]](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%5C%5B%20%5Cbegin%7Bcases%7D%20%0A%20%20%20%20%20%202x%20%26%20x%20%5C%20%5Ctextless%20%5C%20%201%20%5C%5C%0A%20%20%20%20%20%205%20%26%20x%3D1%20%5C%5C%0A%20%20%20%20%20%20x%5E2%20%26%20x%5C%20%5Ctextgreater%20%5C%201%20%0A%20%20%20%5Cend%7Bcases%7D%0A%5C%5D)
To find f(5) ⇒ substitute with x = 5 in the function → x²
∴ f(5) = 5² = 25
To find f(2) ⇒ substitute with x = 5 in the function → x²
∴ f(2) = 2² = 4
To find f(-2) ⇒ substitute with x = 5 in the function → 2x
∴ f(-2) = 2 * (-2) = -4
To find f(1) ⇒ substitute with x = 1 in the function → 5
∴ f(1) = 5
================================
So, the statements which are true:<span>

</span><span>
</span>
Answer:
A
Step-by-step explanation:
The domain of a function is the span of x-values covered by the graph.
From the graph, we can see that it stretches from x=-7 to x=2.
However, note that at x=-7, the dot is closed (shaded in). In other words, x=-7 <em>is</em> in our domain.
On the other hand, at x=2, the dot is not shaded. So, x=2 is <em>not</em> included in our domain.
Therefore, our domain all are numbers between -7 and 2 including -7 (and not including 2).
As a compound inequality, this is:

So, our answer is A.
Also note that we use x instead of p(x) because the domain relates to the x-variable. If we were to instead find the range, then we would use p(x).
Answer:
Step-by-step explanation:
<u>We need to find the difference in progress:</u>
- 1/3 - 2/8 =
- 1/3 - 1/4 =
- 4/12 - 3/12 =
- 1/12
The first student is 1/12 ahead