Yes there called stars because when a star in space goes nova it shines in the sky like a little twinkle because it far away the sun is also a star too.<span />
Answer:
- See the graph attached with the vectors.
Explanation:
The exercise is to draw the corresponding vectors:

Every one is the multiplication of a scalar by a vector.
The result of multiplying a scalar by a vector is a vector with the same direction of the original vector enlarged in a factor equal to the scalar magntitude.
Thus, in a graph the resulting vector is represented with a parallel arrow and pointing in the same direction as the original vector but with a length equal to the original length multiplied by the magnitude of the scalar.
For instance, the vector
is represented with an arrow in the same direction of
and with twice its length.
The figure attached contains the five requested vectors using the procedure explained above.
Assuming that the densities of the gases are:
density of air, ρ1 = 1.29 kg / m^3
density of helium, ρ2 = 0.179 kg / m^3
Since buoyant force and weight are two forces that are in
opposite direction (buoyant force is up while weight is down), therefore equate
the two:
buoyant force = weight
m g = (800 + m1) g
where m is the mass of buoyancy, g is gravity and m1 is
the maximum mass of the cargo
m = 800 + m1
We know that mass is also expressed as:
m = ρ V
where ρ is density of gas and V is volume of the sphere
Since there are two interacting gases here, therefore m
is:
m = (ρ1 – ρ2) V
Therefore:
(ρ1 – ρ2) V = 800 + m1
(1.29 – 0.179) (4π/3) (8.35m)^3 = 800 + m1
2709.33 = 800 + m1
m1 = 1,909.33 kg
General relativity is a theory of space and time. The theory was published by Albert Einstein in 1915. The central idea of general relativity is that space and time are two aspects of spacetime. Spacetime is curved when there is gravity, matter, energy, and momentum.