Answer: The ability to be dissolved
Explanation:
<h3>
Answer:</h3>
4 g AgCl
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN] 2AgNO₃ + BaCl₂ → 2AgCl + Ba(NO₃)₂
[Given] 5.0 g AgNO₃
<u>Step 2: Identify Conversions</u>
[Reaction - Stoich] 2AgNO₃ → 2AgCl
Molar Mass of Ag - 107.87 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of Cl - 35.45 g/mol
Molar Mass of AgNO₃ - 107.87 + 14.01 + 3(16.00) = 169.88 g/mol
Molar Mass of AgCl - 107.87 + 35.45 = 143.32 g/mol
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 1 sig fig.</em>
4.21533 g AgCl ≈ 4 g AgCl
Answer:
i think d maybe correct me if im wrong
Explanation:
Answer : The O-O bond in
will be longer than the O-O bond in
.
Explanation :
In the
, the two oxygen atoms are bonded by the single bond and in
, the two oxygen atoms are bonded by the double bond.
As we know, the bond strength of double bond is greater than the single bond.
And the relation between the bond strength and bond length is,

That means the higher the strength, the shorter will be the bond length.
Hence, the bond length of single bond will be longer than the double bond.
The structure of given molecule is shown below.
Answer:
C. the relative molecular mass of the compound
Explanation:
Like molecular formulas, empirical formulas are not unique and can describe a number of different chemical structures or isomers. <u>To determine an empirical formula, the relative molecular mass of the composition of its elements</u> can be used to mathematically determine their ratio.