A. True.
You can make a hygrometer using strands of hair.
<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>
Answer:
L = 0.48 H
Explanation:
let L be the inductance, Irms be the rms current, Vrms be the rms voltage and Vmax be the maximum voltage and XL be the be the reactance of the inductor.
Vrms = Vmax/(√2)
= (3.00)/(√2)
= 2.121 V
then:
XL = Vrms/I
= (2.121)/(2.50×10^-3)
= 848.528 V/A
that is L = XL/(2×π×f)
= (848.528)/(2×π×(280))
= 0.482 H
Therefore, the inductance needed to kepp the rms current less than 2.50mA is 0.482 H.
The answer to your question is capacitor :)
Answer:
(A). The electric field strength inside the solenoid at a point on the axis is zero.
(B). The electric field strength inside the solenoid at a point 1.50 cm from the axis is
.
Explanation:
Given that,
Magnetic field = 2.0 T
Diameter = 5.0 cm
Rate of decreasing in magnetic field = 5.00 T/s
(A). We need to calculate the electric field strength inside the solenoid at a point on the axis
Using formula of electric field inside the solenoid

Electric field on the axis of the solenoid
Here, r = 0


The electric field strength inside the solenoid at a point on the axis is zero.
(B). We need to calculate the electric field strength inside the solenoid at a point 1.50 cm from the axis
Using formula of electric field inside the solenoid



Hence, (A). The electric field strength inside the solenoid at a point on the axis is zero.
(B). The electric field strength inside the solenoid at a point 1.50 cm from the axis is
.