Hey there !
Mole ratio :
<span>2 KMnO4 + 16 HCl → 2 KCl + 2 MnCl2 + 8 H2O + 5 Cl2
2 moles KMnO4 ----------------- 8 moles H2O
3.45 moles KMnO4 ------------- (moles H2O )
Moles H2O = 3.45 * 8 / 2
Moles H2O = 27.6 / 2
= 13.8 moles of H2O
</span>The option that was given is wrong , <span>You're right.</span>
Answer:
![\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D)
Less than the concentration of Pb2+(aq) in the solution in part ( a )
Explanation:
From the question:
A)
We assume that s to be the solubility of PbI₂.
The equation of the reaction is given as :
PbI₂(s) ⇌ Pb²⁺(aq) + 2I⁻(aq); Ksp = 7 × 10⁻⁹
[Pb²⁺] = s
Then [I⁻] = 2s
![K_{sp} =\text{[Pb$^{2+}$][I$^{-}$]}^{2} = s\times (2s)^{2} = 4s^{3}\\s^{3} = \dfrac{K_{sp}}{4}\\\\s =\mathbf{ \sqrt [3]{\dfrac{K_{sp}}{4}}}\\\\\text{The mathematical expressionthat can be used to determine the value of }\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BPb%24%5E%7B2%2B%7D%24%5D%5BI%24%5E%7B-%7D%24%5D%7D%5E%7B2%7D%20%3D%20s%5Ctimes%20%282s%29%5E%7B2%7D%20%3D%20%204s%5E%7B3%7D%5C%5Cs%5E%7B3%7D%20%3D%20%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%5C%5C%5C%5Cs%20%3D%5Cmathbf%7B%20%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D%5C%5C%5C%5C%5Ctext%7BThe%20mathematical%20expressionthat%20can%20be%20used%20to%20determine%20the%20value%20of%20%20%7D%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D)
B)
The Concentration of Pb²⁺ in water is calculated as :
![\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D)
![\mathbf{s =\sqrt [3]{\dfrac{7*10^{-9}}{4}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7B7%2A10%5E%7B-9%7D%7D%7B4%7D%7D%7D)
![\mathbf{s} =\sqrt[3]{1.75*10^{-9}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%7D%20%3D%5Csqrt%5B3%5D%7B1.75%2A10%5E%7B-9%7D%7D)

The Concentration of Pb²⁺ in 1.0 mol·L⁻¹ NaI




The equilibrium constant:
![K_{sp} =[Pb^{2+}}][I^-]^2 \\ \\ K_{sp} = s*(1.0*2s)^2 =7*1.0^{-9} \\ \\ s = 7*10^{-9} \ \ m/L](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5BPb%5E%7B2%2B%7D%7D%5D%5BI%5E-%5D%5E2%20%5C%5C%20%5C%5C%20K_%7Bsp%7D%20%3D%20s%2A%281.0%2A2s%29%5E2%20%3D7%2A1.0%5E%7B-9%7D%20%5C%5C%20%5C%5C%20s%20%3D%207%2A10%5E%7B-9%7D%20%5C%20%5C%20%20m%2FL)
It is now clear that maximum possible concentration of Pb²⁺ in the solution is less than that in the solution in part (A). This happens due to the common ion effect. The added iodide ion forces the position of equilibrium to shift to the left, reducing the concentration of Pb²⁺.
Number of moles is defined as the ratio of given mass in g to the molar mass.
The mathematical formula is:
Number of moles =
(1)
Number of zinc atoms is equal to
, by Avogadro number, number of moles can be calculated.
As, 1 mol=
atoms, hence,

= 0.2822 mol
Now, from formula (1), calculate mass in g (molar mass of zinc = 65.4 g/mol)
0.2822 mol =
mass in g = 
= 18.45588 g
Thus, by rounding off the above number, it will come near about 19 g approximately.
Hence, option (C) is the correct answer.
Answer:
V = 80.65L
Explanation:
Volume = ?
Number of moles n = 5 mol
Temperature (T) = 393.15K
Pressure = 1520mmHg
Ideal gas constant (R) = 62.363mmHg.L/mol.K
According to ideal gas law,
PV = nRT
P = pressure of the ideal gas
V = volume the gas occupies
n = number of moles of the gas
R = ideal gas constant (note this can varies depending on the unit of your variables)
T = temperature of the ideal gas
PV = nRT
Solve for V,
V = nRT / P
V = (5 * 62.363 * 393.15) / 1520
V = 80.65L
The volume the gas occupies is 80.65L
There are different chemical agents which are used to study the heart rate of frog. Generally Ringer's solution is used to study frog's heart simulation. At different temperature, frogs heart speeds up or slows down while using Ringer's solution at experiment. Ringer's solution is mixture of salt solution which comprises of NaCl, KCl, CaCl2 and Na2CO3. Sometimes other chemicals like MgCl or antibiotics are also used as addition in Ringer's solution.
This solution is chiefly used to study in vitro experiments on organs and tissues like frog's heart.
Ringer's solution at 23 degree Celsius for normal heart rate
Ringer's solution at 32 degree Celsius, heart rate speed up and
Ringer's solution at 5 degree Celsius, heart rate slows down.
other chemicals also have significant effect in heart rate,
For example, Calcium ion in excess will slow down the heart rate, Atropine increases heart rate and digitalis slows down the heart rate.