Answer:
At the molecular level, materials are held together by bonds, which act like springs for small displacements from the equilibrium spacing between neighboring atoms. Push the atoms close, the bond pushes back to keep them apart. Pull them apart, the bond pulls the atoms closer. For those small displacements, it acts like a spring
The speed of the wave will be related to the stiffness of of those springs - you compress the material - how quickly do all of those little springs rebound and push their neighboring atoms away, sending that wave of compression through the material.
Explanation:
Radio waves are the longest
A) the final velocity = 66/9 m/s.
b) The total momentum before and after collision is the same because energy is destroyed or made.
Thanks brainly. <span />
Answer:
"8 units" is the appropriate answer.
Explanation:
According to the question,
Throughout equilibrium all particles are of equivalent intensity, and as such the integrated platform's total energy has been uniformly divided across all individuals.
Now,
The total energy will be:
= 
= 
The total number of particles will be:
= 
= 
hence,
Energy of each A particle or each B particle will be:
= 
= 
Answer:
Answer is C
Explanation:
Let's say the pendulum starts swinging from its max height from the left. It then will go down and reach the equilibrium position, this will make it lose GPE while gaining KE (the loss in GPE = gain in KE). At the equilibrium position it has the max KE (max velocity) and minimum GPE. After passing the equilibrium it then starts to head up to the max height on the right, the pendulum gains GPE while losing KE and at the top will have minimum KE while having max GPE. Meaning throughout its joruney the total energy remains constant as
Total energy = KE + GPE
I have attached a simple diagram below, the y axis is the energy and x axis being the time (where t = 0 is the pendulum starting from max height left of the equilibrium). The green curve the the GPE and blue curve is KE. Red line shows that at all times the energy is constant.