Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V
Energy transfer the energy from the tuning fork is being transferred to the guitar<span />
Answer:
D.Proprioceptors
Explanation:
"Proprioceptors is Sensory receptors found in muscle an tendons that detect their degree of stretch"
If the bubble travels 10 meters per second and it takes 10 seconds, then just multiply the distance per second by the total seconds to get the total depth.
10 • 10 = 100
The lake is 100 meters deep.
Think of it this way to clarify the answer:
It takes a bubble traveling at a speed of 10 meters per second 10 seconds to travel 100 meters.
We are given the equation:
<span>x = 11t^2
</span>
We use that equation to calculate for the distance traveled.
For (a)
At t=2.20 sec,
x =53.24 meters
At t=2.95 sec,
x =95.73 meters
Velocity = (95.73 meters - 53.24<span> meters) / (2.95 s - 2.20 s ) = 56.65 m/s
</span>For (b)
At t=2.20 sec,
x =53.24 meters
At t=2.40 sec,
x =63.36 meters
Velocity = (63.36 meters - 53.24<span> meters) / (2.40 s - 2.20 s ) = 50.6 m/s</span>