<span>Mechanical association learning used by an actor to memorize his lines</span>
Can you input a picture??
Answer:
The answer to your question is : vf = 15.18 m/s
Explanation:
Data
vo = 24 m/s
d = 120 m
vf = ? when d = 60.0 m
Formula
vf² = vo² + 2ad
For d =100m
a = (vf² - vo²) / 2d
a = (0 -24²) / 2(100)
a = -576/200
a = 2.88 m/s²
Now, when d = 60
vf² = (24)² - 2(2.88)(60)
vf² = 576 - 345.6
vf² = 230.4
vf = 15.18 m/s
Answer:
a) i₈ = 0.5 i₄, b) i₁₀ = 0.3 i₃, i₁₀ = 0.8 i₈
Explanation:
For this exercise we use ohm's law
V = i R
i = V / R
we assume that the applied voltage is the same in all cases
let's find the current for each resistance
R = 4 Ω
i₄ = V / 4
R = 8 Ω
i₈ = V / 8
we look for the relationship between these two currents
i₈ /i₄ = 4/8 = ½
i₈ = 0.5 i₄
R = 3 Ω
i₃ = V3
R = 10 Ω
i₁₀ = V / 10
we look for relationships
i₁₀ / 1₃ = 3/10
i₁₀ = 0.3 i₃
i₁₀ / 1₈ = 8/10
i₁₀ = 0.8 i₈
charge must be equal to 5.74 ×10⁻⁵
In the question it is said that the particle remains stationary which means the the net force on the particle is zero. So, the counterbalancing forces must be equal which means weight is equal to upward electric force.
→ Fnet =0
→ mg = qE
substituting the values we get :
0.00345 × 9.81 = q × 590
→ q = 5.74 ×10⁻⁵
Hence the charge must be equal to 5.74 ×10⁻⁵.
Learn more about charges here:
brainly.com/question/26092261
# SPJ4