Answer:
The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.
Explanation:
Let's start with the concept of momentum. What is it? Linear momentum in physics is mathematically written as a product of mass and velocity of an object. Now let us suppose a body of mass m is moving in an inertial frame of reference with velocity v. Consider the fact that no external force is acting on the system. The momentum of this body is given by mv, where m is the mass and v is its velocity. In case of simple real world problems not delving into the realms of relativity, mass is a conserved quantity and it cannot be zero. Hence the velocity of the body must be zero and hence the momentum.
However, photons are considered to have a rest mass zero.
However note the point carefully "rest mass". A body in motion cannot have mass to be zero.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em>
Answer:
thermal energy
Explanation:
heat transfers into it causing it to physically change
Answer:
100 ÷ 9.58 = 10.44 (approximate answer)
Answer:
b. If Wire B carries a northward conventional current and lies to the left (west) of wire A, then it will experience an attractive force to the right (towards Wire A).
d. If Wire B carries a southward conventional current and lies to the left (west) of wire A, then it will experience a repulsive force to the left (away from Wire A).
Explanation:
Two parallel conductors experience attractive force when the current flowing in the conductors are in the same direction.
Also two parallel conductors experience repulsive force when the current flowing in the conductors are in opposite direction.
Therefore, b and d are the correct options.
b. If Wire B carries a northward conventional current and lies to the left (west) of wire A, then it will experience an attractive force to the right (towards Wire A).
d. If Wire B carries a southward conventional current and lies to the left (west) of wire A, then it will experience a repulsive force to the left (away from Wire A).