F = 130 revs/min = 130/60 revs/s = 13/6 revs/s
t = 31s
wi = 2πf = 2π × 13/6 = 13π/3 rads/s
wf = 0 rads/s = wi + at
a = -wi/t = -13π/3 × 1/31 = -13π/93 rads/s²
wf² - wi² = 2a∅
-169π²/9 rads²/s² = 2 × -13π/93 rads/s² × ∅
∅ = 1209π/18 rads
n = ∅/2π = (1209π/18)/(2π) = 1209/36 ≈ 33.5833 revolutions.
Answer:
The impression of the image on the retina lasts for about 1/16th of a second after the removal of the object. If a burning stick of incense is revolved at a rate of more than sixteen revolutions per second, we see a circle of red light due to persistence of vision.
Explanation:
<h2>Answer: I know when it comes to magnetic objects the magnet always pulls not push.</h2>
Answer:
α = 395 rad/s²
Explanation:
Main features of uniformly accelerated circular motion
A body performs a uniformly accelerated circular motion when its trajectory is a circle and its angular acceleration is constant (α = cte). In it the velocity vector is tangent at each point to the trajectory and, in addition, its magnitude varies uniformly.
There is tangential acceleration (at) and is constant.
at = α*R Formula (1)
where
α is the angular acceleration
R is the radius of the circular path
There is normal or centripetal acceleration that determines the change in direction of the velocity vector.
Data
R = 0.0600 m :blade radius
at = 23.7 m/s² : tangential acceleration of the blades
Angular acceleration of the blades (α)
We replace data in the formula (1)
at = α*R
23.7 = α*(0.06)
α = (23.7) / (0.06)
α = 395 rad/s²
An organism scientific name consist of : C. its genus name and its species name
The first part of the name is taken from the Genus and the second part of the name is taken from the species
hope this helps