Answer: The major challenges are as
1) understanding of the plasma: Plasma is a soup like mixture of subatomic particles of different atoms nuclei and electrons that are shattered apart by the temperature at which plasma is formed. further research is needed to understand the behavior of plasma so that it can be put to a proper use.
2) Confinement of plasma: Once we get the plasma we need to hold it so that we can obtain heat from it to drive a steam turbine but the sheer temperature of plasma is in millions of Celsius thus currently making it impossible to confine conventionally. Scientists use a loop of electric and magnetic fields to keep it in circulatory like manner so that it can be studied.
3) finally to obtain electricity from the plasma it should be stable to produce electricity. But currently to obtain pressure, temperature so that we have a sustained supply is highly difficult in technical and economical aspects.
Inertial confinement: In order to get the nuclei of atoms close enough for fusion this type of method used compression of the nuclei into highly small volumes.This is accomplished by use of lasers which are directed towards the fuel pellets that implode and travel towards other nuclei making fusion possible. It's main advantage is that it requires lesser time to initiate fusion but the disadvantage being that a large power is used to fire the lasers and the lasers should all hit the small target.
Magnetic Confinement: In this method we use a magnetic and electric fields in a properly designed space to keep the plasma in motion. In motion the nuclei of the atoms come close enough to initiate fusion.It's advantage being less power is required to start the process as compared to inertial confinement and the disadvantage being that plasma confinement is currently not properly understood.
Electric Current:
Electric current is the flow of charge through a given circuit per unit time. Electric current is one of the components needed to calculate the electric power that a device needs to operate and do work. Electric current is measured in amperes (A), which is equal to:
1A = 1 C/ s
Recall that the coulomb (C) is the unit for charge while the second (s) is the unit for time
Given: I = 3.5
A is the current
Δt =30 s is the time interval
A =ΔQ/ΔT
Net charge = 100C
Electricity is produced when an electric current runs through a circuit.
How does electric current work?
A current of electricity is a steady flow of electrons. When electrons move from one place to another, round a circuit, they carry electrical energy from place to place like marching ants carrying leaves. Instead of carrying leaves, electrons carry a tiny amount of electric charge.
Learn more about Electric current :
brainly.com/question/27003377
#SPJ4
A magnetic field is a force field, invisibly pushing electrically charged objects just as a gravitational field pulls objects with mass. Whereas all objects with mass exert a gravitational field, however, not all objects have a magnetic field. Magnetic fields are created by electrical charges. Thanks to their structure at the atomic level, some substances -- like the iron in magnets -- have a permanent magnetic field.
Answer:
The velocity of the ball is 5 m/s to the left.
Explanation:
-25kg*m/s divided by 5 kg gives
speed of -5 m/s
The velocity of the ball is 5 m/s to the left.
In this problem, we apply the equation regarding kinematics expressed as vf^2 = v0^2 + 2as vf eventually becomes zero because the ball stops in the end. a = -9.8 m/s2s = 2 metres this time
This gives initial velocity, vo equal to 6.26m/s
now 6.26-(-8.85) = 15.11m/s
change in velocity/change in time = average acceleration 15.11/(12/1000) = 1259.167 m/s^2