1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lorico [155]
3 years ago
13

The shape of the orbit for most comets is a(n): circle parabola ellipse oval

Physics
1 answer:
worty [1.4K]3 years ago
6 0

Answer:

Ellipse

Explanation:

Most comets have an elliptical path of orbit.

You might be interested in
A rocket starting from its launch pad is subjected to a uniform acceleration of 100 meters/second2. Determine the time needed to
gizmo_the_mogwai [7]

Answer:

10s

Explanation:

Acceleration is a measure of a rate of change of velocity, or in other words, a measure of how quickly the velocity is changing.

If acceleration is constant, then the velocity is changing by a constant amount.

With an acceleration of 100 m/s^2, starting from the launching pad (and thus, an initial velocity of zero), we can calculate how long it will take to reach a final velocity of 1000m/s with the following formula:

v=at+v_o where "v" is the final velocity at some later time "t", "a" is the constant acceleration, and "v" sub-zero is the initial velocity.

v=at+v_o

(1000\text{ [m/s]})=(100 \text{ } [\text{m/s}^2] )t+(0\text{ [m/s]})

1000\text{ [m/s]}=100 \text{ } [\text{m/s}^2] *t

\dfrac{1000\text{ [m/s]}}{100 \text{ } [\text{m/s}^2]}=\dfrac{100 \text{ } [\text{m/s}^2] *t}{100 \text{ } [\text{m/s}^2]}

10\text{ [s]}=t

So, it will take 10 seconds for the rocket to reach 1000m/s when starting from the launching pad, with a constant velocity of 100m/s^2.

<u>Verification:</u>

In this situation, it is quick to verify that 10 seconds is correct by looking at what the velocities will be each second.

Recognizing that the acceleration is a=\dfrac{100 [\frac{m}{s}]}{1[s]}, the velocity increases by 100 units [m/s] every second.

At time 0[s], the velocity is 0[m/s]

At time 1[s], the velocity is 100[m/s]

At time 2[s], the velocity is 200[m/s]

At time 3[s], the velocity is 300[m/s]

At time 4[s], the velocity is 400[m/s]

At time 5[s], the velocity is 500[m/s]

At time 6[s], the velocity is 600[m/s]

At time 7[s], the velocity is 700[m/s]

At time 8[s], the velocity is 800[m/s]

At time 9[s], the velocity is 900[m/s]

At time 10[s], the velocity is 1000[m/s]

So, indeed, after 10 seconds, the velocity reaches 1000 m/s

5 0
2 years ago
What do we call the minimum energy that is required by an electron to leave the metal target in the photoelectric effect?Select
Sergio [31]
The work function is what we call the minimum energy that is required by an electron to leave the metal target in the photoelectric effect. 
6 0
3 years ago
Read 2 more answers
A source charge generates an electric field of 4286 N/C at a distance of 2. 5 m. What is the magnitude of the source charge? (Us
svp [43]

The magnitude of the source charge is 3 μC which generates 4286 N/C of the electric field. Option B is correct.

What does Gauss Law state?

It states that the electric flux across any closed surface is directly proportional to the net electric charge enclosed by the surface.

Q = \dfrac {ER^2}k

Where,

E = electric force = 4286 N/C

k = Coulomb constant = 8.99 \times  10^9 \rm\ N m ^2 /C ^2

Q\\&#10;     = charges = ?

r = distance of separation = 2.5 m

Put the values in the formula,

Q  = \dfrac {4286\times  2.5 ^2}{8.99 \times  10^9 }\\\\&#10;Q  = 3\rm \  \mu C

Therefore, the magnitude of the source charge is 3 μC.

Learn more about Gauss's law:

brainly.com/question/1249602

8 0
2 years ago
A 2.5 kg tribble is placed in a bucket and whirled in a 1.4 m radius vertical circle at a constant tangential speed. If the forc
Over [174]

Given that,

Mass of a tribble, m = 2.5 kg

Radius, r = 1.4 m

The force on the tribble from the bucket does not exceed 10 times its weight.

To find,

The maximum tangential speed.

Solution,

The force acting on the tribble is equal to the centripetal force.

F = 10mg

The formula for the centripetal force is given by :

F=\dfrac{mv^2}{r}

v is maximum tangential speed

v=\sqrt{\dfrac{Fr}{m}} \\\\v=\sqrt{\dfrac{mgr}{m}} \\\\v=\sqrt{{10gr}} \\\\v=\sqrt{10\times 9.8\times 1.4} \\\\v=11.7\ m/s

So, the maximum tangential speed is 11.7 m/s.

8 0
3 years ago
es la atmósfera que se percibe en un cuento de acuerdo a la manera de pensar y sentir de los personajes no se ve sólo se siente​
masya89 [10]

Answer:

can you please ask in english

8 0
3 years ago
Other questions:
  • Which of the following activities works on muscle strength? A. cutting hedges B. moving furniture C. raking leaves D. vacuuming
    12·1 answer
  • A potential drop of 50. volts is measured across a
    14·1 answer
  • Under most conditions, except ________ change, the resistance of an object is a constant and does not depend on the amount of th
    11·1 answer
  • How does deforestation contribute to the greenhouse effect?
    10·1 answer
  • A fighter jet accelerates from 10 m/s to 75 m/s in 7.0 s. The acceleration of the jet is
    11·1 answer
  • One beam of electrons moves at right angles to a magnetic field. The force on these electrons is 4.9 × 10-14 newtons. A second b
    5·2 answers
  • Question 12
    12·1 answer
  • Which type radiation can be observed well from Earth's surface?
    10·2 answers
  • What is a mixture?
    13·2 answers
  • What is the difference between speed and velocity?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!