Answer:
The time rate of change of flux is

Explanation:
Given :
Current
A
Area of plate

Plate separation
m
(A)
First find the capacitance of capacitor,

Where 

F
But 
Where 


Now differentiate above equation wrt. time,



Therefore, the time rate of change of flux is

Answer:Draw a T-s diagram for the ideal Rankine Cycle
Explanation:
A car of mass 1535 kg collides head-on with a parked truck of mass 2000 kg. Spring mounted bumpers ensure that the collision is essentially elastic. If the velocity of the truck is 17 km/h (in the same direction as the car's initial velocity) after the collision, what was the initial speed of the car <u>20kmh</u>
<h3>What is
collision ?</h3>
A collision in physics is any situation in which two or more bodies quickly exert forces on one another. Despite the fact that the most common usage of the word "collision" refers to situations in which two or more objects clash violently, the scientific usage of the word makes no such assumptions.
The following are a few instances of physical encounters that scientists might classify as collisions:
- Legs of an insect are said to collide with a leaf when it falls on one.
- Every contact of a cat's paws with the ground while it strides across a lawn is seen as a collision, as is every brush of its fur with a blade of grass.
To learn more about collision from the given link:
brainly.com/question/27736776
#SPJ4
Sure. The acceleration may be decreasing, but as long as it stays
in the same direction as the velocity, the velocity increases.
I think you meant to ask whether the body can have increasing velocity
with negative acceleration. That answer isn't simple either.
If the body's velocity is in the positive direction, then positive acceleration
means speeding up, and negative acceleration means slowing down.
BUT ... If the body's velocity is in the negative direction, then positive
acceleration means slowing down, and negative acceleration means
speeding up.
I know that's confusing.
-- Take a piece of scratch paper, write a 'plus' sign at one edge and
a 'minus' sign at the other edge. Those are the definitions of which
direction is positive and which direction is negative.
-- Then sketch some cars ... one traveling in the positive direction, and
one driving in the negative direction. Those are the directions of the
velocities.
-- Now, one car at a time:
. . . . . first push on the back of the car, in the direction it's moving;.
. . . . . then push on the front of the car, against its motion.
Each push causes the car to accelerate in the direction of the push.
When you see it on paper, all the positive and negative velocities
and accelerations will come clear for you.
Answer:
(a) 89 m/s
(b) 11000 N
Explanation:
Note that answers are given to 2 significant figures which is what we have in the values in the question.
(a) Speed is given by the ratio of distance to time. In the question, the time given was the time it took the pulse to travel the length of the cable twice. Thus, the distance travelled is twice the length of the cable.

(b) The tension,
, is given by

where
is the speed,
is the tension and
is the mass per unit length.
Hence,

To determine
, we need to know the mass of the cable. We use the density formula:

where
is the mass and
is the volume.

If the length is denoted by
, then


The density of steel = 8050 kg/m3
The cable is approximately a cylinder with diameter 1.5 cm and length or height of 620 m. Its volume is



