Answer:

Explanation:
When an amount of energy Q is supplied to a substance of mass m, the temperature of the substance increases by
, according to the equation

where
is the specific heat capacity of the substance.
In this problem, we have:
is the amount of heat supplied to the sample of gold
m = 0.1 kg = 100 g is the mass of the sample
is the specific heat capacity of gold
Solving for
, we find the change in temperature

And since the final temperature was

The initial temperature was

The answer for apex is ibn al-haytham.
...................................................................
Quasi frequency = 4√6
Quasi period = π√6/12
t ≈ 0.4045
<u>Explanation:</u>
Given:
Mass, m = 20g
τ = 400 dyn.s/cm
k = 3920
u(0) = 2
u'(0) = 0
General differential equation:
mu" + τu' + ku = 0
Replacing the variables with the known value:
20u" + 400u' + 3920u = 0
Divide each side by 20
u" + 20u' + 196u = 0
Determining the characteristic equation by replacing y" with r², y' with r and y with 1 in the differential equation.
r² + 20r + 196 = 0
Determining the roots:

r = -10 ± 4√6i
The general solution for two complex roots are:
y = c₁ eᵃt cosbt + c₂ eᵃt sinbt
with a the real part of the roots and b be the imaginary part of the roots.
Since, a = -10 and b = 4√6
u(t) = c₁e⁻¹⁰^t cos 4√6t + c₂e⁻¹⁰^t sin 4√6t
u(0) = 2
u'(0) = 0
(b)
Quasi frequency:
μ = 

(c)
Quasi period:
T = 2π / μ

(d)
|u(t)| < 0.05 cm
u(t) = |2e⁻¹⁰^t cos 4√6t + 5√6/6 e⁻¹⁰^t sin 4√6t < 0.05
solving for t:
τ = t ≈ 0.4045
Answer:
D. 21 ml
Explanation:
Since, the cylinder is marked and graduated in the intervals if 1 ml. Therefore, the values between two consecutive ml, such as between 30 ml and 31 ml can not be determined. Because, we do not have any scale in between the ml. So, the least count of this instrument is 1 ml. This graduated cylinder can give the answers to zero decimal places, accurately. And it can not determine any decimal value due to its graduating or the marking limitation. So, all the options given, contain a decimal value, except for the option D. In option D there is no decimal value, hence it is a correct answer.
D. <u>21 ml</u>