Answer:
643g of methane will there be in the room
Explanation:
To solve this question we must, as first, find the volume of methane after 1h = 3600s. With the volume we can find the moles of methane using PV = nRT -<em>Assuming STP-</em>. With the moles and the molar mass of methane (16g/mol) we can find the mass of methane gas after 1 hour as follows:
<em>Volume Methane:</em>
3600s * (0.25L / s) = 900L Methane
<em>Moles methane:</em>
PV = nRT; PV / RT = n
<em>Where P = 1atm at STP, V is volume = 900L; R is gas constant = 0.082atmL/molK; T is absolute temperature = 273.15K at sTP</em>
Replacing:
PV / RT = n
1atm*900L / 0.082atmL/molK*273.15 = n
n = 40.18mol methane
<em>Mass methane:</em>
40.18 moles * (16g/mol) =
<h3>643g of methane will there be in the room</h3>
Answer:
No. Of Moles of zinc = m/Ar
= 13/ 65.38 = 0.198 moles
From balanced equation, Mole ration between CuSO4 and Zn is 1 : 1
So only 0.198 moles of CuSO4 reacts, it is in excess
Mass = no of Moles X Mr
Mass = 0.198 X 159.5 = 31.59 grams
Volume = mass m denisty
Volume j 31.59 / 3.6 = 8.78 ml
Explanation:
i think this wrong
Answer:
False
Explanation:
The density of Interstellar dust is very low,yet it still blocks starlight because. .....the Dust emission nebulae like M42 occur only near star that emit large amount of. ......Hydrogen is the major gas in the interstellar medium.
Once molecules are close enough to touch, intermolecular forces become replusive in order to prevent the molecules from overlapping.
Answer:
كىتى
Explanation:
ؤكىتسؤكى سكتؤىسى شؤت سؤتنى،آ}تسى}