Answer:
Here, force=20N and displacement=10m
Work=Force×Displacement=20N×10m=200Nm
Answer:
An object on the moon would weigh the LEAST among these. So correct answer is B.
Explanation:
- Weight of an object on any place is given by:
W = Mass * Acceleration due to gravity(g)
- It means when masses of different objects those are in different places are same, the weight of those objects depends upon the 'g' of that particular place.
- As we know, acceleration due to gravity on surface of moon (g') is 6 times weaker than the acceleration on surface of earth (g), which is due to the large M/R^2 of the earth than the moon.
i.e. g' = g/6 so W' = W/6
- And in the space between the two, the object is weightless.
Answer:
The term mass is used to refer to the amount of matter in any given object For instance, a person or object may be weightless on the moon because of the lack of gravity but that same person or object maintains the same mass regardless of location
Explanation:
Answer:
λ = 8.716 mm
Explanation:
Given:
- d = 10 cm
- Q >= 5 degrees
Find:
- Find the shortest wavelength of light for which this apparatus is useful
Solution:
- The formula that relates the split difference and angle of separation between successive fringes is given by:
d*sin(Q) = n*λ
Where,
λ: wavelength
d: split separation
Q: angle of separation between successive fringes
m: order number.
- Since this apparatus only shows the first order light so m =1
- the shortest possible wavelength corresponds to:
d*sin(Q) = λ
λ = 0.1*sin(5)
λ = 8.716 mm
Answer:
The statement is true: velocity and acceleration have opposite directions in the interval of braking.
Explanation:
Let's say we have a velocity
.
The acceleration
is the rate of change of the velocity
. This means that if
is <em>increasing during</em> time, then
must be positive. But if
is <em>decreasing over</em> time, then
will be negative (even though the velocity is positive).
Mathematically:

decreases ⇒
⇒
.
Example:
