Answer:
Explanation:
Given that
Mass , m = 25 kg
We know that when body is in rest condition then static friction force act on the body and when body is in motion the kinetic friction force act on the body .That is why these two forces are given as follows
Static friction force ,fs= 165 N
Kinetic friction force ,fk = 127 N
If the body is moving with constant velocity ,it means that acceleration of that body is zero and all the forces are balanced.
Lets take coefficient of kinetic friction = μk
The kinetic friction is given as follows
fk = μk m g
Now by putting the values
127 = μk x 25 x 9.81


Therefore the value of coefficient of kinetic friction will be 0.51
You can conclude that the solution is probably acidic because bases rarely react with metals.
Answer:
-10.9 rad/s²
Explanation:
ω² = ω₀² + 2α(θ - θ₀)
Given:
ω = 13.5 rad/s
ω₀ = 22.0 rad/s
θ - θ₀ = 13.8 rad
(13.5)² = (22.0)² + 2α (13.8)
α = -10.9 rad/s²
The gravitational potential energy (G.P.E) of the ceiling fan is 712.95 Joules.
<u>Given the following data:</u>
- Mass of ceiling fan = 7.5 kg
<u>Scientific data:</u>
- Acceleration due to gravity = 9.8

To calculate the gravitational potential energy (G.P.E) of the ceiling fan:
<h3>
What is gravitational potential energy?</h3>
Gravitational potential energy (G.P.E) can be defined as the energy that is possessed by an object or body due to its position (height) above planet Earth.
Mathematically, gravitational potential energy (G.P.E) is given by this formula;

<u>Where:</u>
- G.P.E is the gravitational potential energy.
- m is the mass of an object.
- g is the acceleration due to gravity.
- h is the height of an object.
Substituting the given parameters into the formula, we have;

GPE = 712.95 Joules.
Read more on potential energy here: brainly.com/question/8664733
Answer:
Q = 8 μC
Explanation:
The relation between voltage, capacitance and charge can be expressed using the following rule:
Q = C * V
where:
Q is the amount of charge that we want to calculate
C is the capacitance = 4 * 10⁻⁶ F
V is the voltage applied = 2 V
Substitute with the givens in the above equation to get the amount of charge as follows:
Q = C * V
Q= 4 * 10⁻⁶ * 2
Q = 8 * 10⁻⁶ Coulumb
Q = 8 μC
Hope this helps :)