Answer:
The heat that was used to melt the 15.0 grams of ice at 0°C is 4,950 Joules
Explanation:
The mass of ice in the beaker = 15.0 grams
The initial temperature of the ice = 0°C
The final temperature of the ice = 0°C
The latent heat of fusion of ice = 330 J/g
The heat required to melt a given mass of ice = The mass of the ice to be melted × The latent heat of fusion of ice
Therefore, the heat, Q, required to melt 15.0 g of ice = 15.0 g × 330 J/g = 4,950 J
The heat that was used to melt the 15.0 grams of ice = 4,950 Joules.
D sublevel because the s sublevel has one orbital, the p sublevel has three orbitals, the d sublevel has five orbitals, and the f sublevel has seven orbitals. In the first period, only the 1s sublevel is being filled.
Gases are compressible because most of the volume of a gas is composed of the large amounts of empty space between the gas particles. Hope this helped!
Answer:
513.74 g of solution
Explanation:
% Mass grams are defined as the <em>grams that are dissolved in salt</em> (in this case, it would be <em>potassium nitrate</em>) <em>dissolved every 100 g of the solution</em>. Having this information, you can calculate the amount of solution that has dissolved 18.7 g of potassium nitrate, which is what we want to obtain.
The relationship is:
3.64 g of potassium nitrate _____ 100 g solution
18.7 g of potassium nitrate _____ X = 513.74 g of solution
Calculation: 18.7g x 100g / 3.64g = 513.74 g of solution
So, <em>I need 513.74 g of solution to get 18.7g of potassium nitrate by evaporating it</em>.
Answer:
2C8H18(l) + O2(g)--->CO2(g)+H2O