Answer:
cytoplasm is A, Dna is C, and nucleas is B
Explanation:
1. Salt is KNO₃<span>
<span>This is a </span>strong acid - strong base<span> <span>reaction. </span></span>HNO</span>₃ is the strong acid<span> <span>and </span></span>KOH is the strong
base<span>. </span><span>
H</span>⁺<span> in the HNO₃<span>
and </span></span>OH⁻<span> <span>of the KOH pair up and make </span></span>H₂O(l)<span>. </span><span>
NO</span>₃⁻<span> <span>and </span></span>K⁺<span> <span>pair up to make </span></span>KNO₃ salt<span>. </span><span>
<span>When writing chemical formulas </span>positive ion comes first<span> <span>and second
is negative ion. The charges should be switched. Since </span></span>positive ion has +1 and negative
ion has -1<span> <span>after
the switching off charges </span>the </span>product should be KNO</span>₃.<span>
Balance
equation is </span><span>
HNO</span>₃<span>(aq) + KOH(aq) → H</span>₂O(l) + KNO<span>₃(aq)</span><span>
<span>
2. Salt is Ca(NO</span></span>₃)₂<span>
</span>This is a strong acid - strong
base<span> reaction. </span>HNO₃ is the strong acid<span> and </span>Ca(OH)₂ is the strong base<span>. </span><span>
<span>
H</span></span>⁺<span> in the HNO₃ and </span>OH⁻<span> of the Ca(OH)₂
pair up and make </span>H₂O(l)<span>. </span><span>
Ca²⁺
and </span>NO₃⁻<span> pair up to make </span>Ca(NO₃)₂ salt<span>. </span><span>
<span>
</span><span>Positive ion is </span>Ca²⁺<span>
which has </span></span>+2 charge<span> and negative ion is</span> NO₃⁻<span> <span>which has </span></span>-1 charge<span>. From switching the charges </span>Ca²⁺ gets 1<span> <span>while </span></span>NO₃⁻ gets 2.<span> Hence, the salt should be </span>Ca(NO₃)₂.<span>
Balanced equation
is
</span>2HNO₃<span>(aq) + Ca(OH)</span>₂<span>(aq) → 2H</span>₂O(l) + Ca(NO<span>₃)₂(aq)</span><span>
<span>
3. Salt is CaCl</span></span>₂<span>
This is a strong acid - strong base<span> reaction. </span>HCl is the
strong acid<span> and </span>Ca(OH)</span>₂ is the strong base<span>. </span><span>
<span>
H</span></span>⁺<span> in the HCl and </span>OH⁻<span> of the Ca(OH)₂
pair up and make </span>H₂O(l)<span>. </span><span>
Ca²⁺
and </span>Cl⁻<span> pair up to make </span>CaCl₂ salt<span>. </span><span>
<span>
</span><span>Positive ion is </span>Ca²⁺
which has </span>+2
charge<span> and negative ion is</span> Cl⁻<span> which has </span>-1
charge<span>. By switching the charges </span>Ca²⁺ gets 1<span> while </span>NO₃⁻ gets 2.<span> Hence, the salt should be </span>CaCl₂.<span>
Balance
equation is
</span><span>2HCl(aq) + Ca(OH)</span>₂<span>(aq) → 2H</span>₂O(l) + CaCl₂<span>(aq)
4. Salt is KCl<span>
</span>This is a strong acid - strong base<span> reaction. </span>HCl is the
strong acid<span> and </span>KOH is
the strong base<span>. </span>
<span>
H</span></span>⁺<span> in the HCl and </span>OH⁻<span> of the KOH pair up and make </span>H₂O(l)<span>. </span><span>
K</span><span>⁺ and </span>Cl⁻<span> pair up to make </span>KCl salt<span>. </span><span>
<span>
</span><span>Positive ion is K</span></span><span>⁺ which has </span>+1
charge<span> and negative ion is</span> Cl⁻<span> which has </span>-1
charge<span>. By switching the charges </span>K⁺ gets 1<span> and </span>Cl⁻ also gets 1.<span> Hence, the salt should be </span>KCl.<span>
Balance
equation is
</span><span>HCl(aq) + KOH(aq) → H</span>₂<span>O(l) + KCl(aq)</span>
4) would be your correct answer
The sample with the lowest AVERAGE kinetic energy is
the coolest one.
The sample with the lowest TOTAL kinetic energy depends on
not only the temperature of the samples, but also on their size,
since each molecule in the sample has kinetic energy.
The mass defect for the isotope thorium-234 if given mass is 234.04360 amu is 1.85864 amu.
<h3>How do we calculate atomic mass?</h3>
Atomic mass (A) of any atom will be calculated as:
A = mass of protons + mass of neutrons
In the Thorium-234:
Number of protons = 90
Number of neutrons = 144
Mass of one proton = 1.00728 amu
Mass of one neutron = 1.00866 amu
Mass of thorium-234 = 90(1.00728) + 144(1.00866)
Mass of thorium-234 = 90.6552 + 145.24704 = 235.90224 amu
Given mass of thorium-234 = 234.04360 amu
Mass defect = 235.90224 - 234.04360 = 1.85864 amu
Hence required value is 1.85864 amu.
To know more about Atomic mass (A), visit the below link:
brainly.com/question/801533