<u>Answer:</u> 6.57 L of solution can be made.
<u>Explanation:</u>
Molarity is defined as the amount of solute expressed in the number of moles present per liter of solution. The units of molarity are mol/L. The formula used to calculate molarity:
.....(1)
Given values:
Molarity of LiBr = 3.5 M
Moles of LiBr = 23 moles
Putting values in equation 1, we get:

Hence, 6.57 L of solution can be made.
If the substance mixes with water it's polar. If it doesn't it ms non polar.
Answer:
A) if the system is isothermal then all the heat added to the system will be used to do work (since none is used to raise the temperature of the gas). The heat added will be equal to the work done = 340 J
B) change in internal energy of the system of the process is isothermal will be zero, since there is no rise in temperature.
C) an adiabatic process is one involving no heat loss or gain through the system, Therefore heat gain will be zero
D) if the process is adiabatic then there is no heat loss or gain through the system and hence there is no change in temperature. Change in internal energy will be zero
E) if the process is isobaric then, there is no work done and the total heat to the system is equal zero
F) if there is no work done, and no heat added, then the internal energy will be equal zero.
First, calculate the number of moles of sodium present with the given mass,
31.5 g of sodium x (1 mol sodium/ 23 g sodium) = 1.37 mol sodium
It is given in the equation that for every 2mols of sodium, one mol of H2 is produced.
mols of H2 = (1.37 mols sodium)(1 mol H2/ 2 mols sodium)
mols of H2 = 0.685 mols H2
Then, at STP, 1 mol of gas = 22.4 L.
volume of H2 = (0.685 mols H2)(22.4 L / 1 mol)
volume of H2 = 15.34 L
Answer: 15.34 L