(1) The time of motion of the arrow is 0.25 s.
(2) The vertical height dropped by the arrow as it approaches the target is 0.31 m.
The given parameters:
- <em>Horizontal distance of the arrow, X = 20 m</em>
- <em>Horizontal speed of the arrow, v = 80 m/s</em>
<em />
The time of motion of the arrow is calculated as follows;

The vertical height dropped by the arrow as it approaches the target is calculated as follows;

Learn more about time of motion of projectile here: brainly.com/question/1912408
Answer:
ΔP = 986 Kpa
Explanation:
The solution is given in the pictures below
Answer:
Rockets provide a wonderful example of Momentum Conservation. As momentum in one direction is given to the rocket's exhaust gases, momentum in the other direction is given to the rocket itself.
Explanation:
First, think of two masses connected by a lightweight (massless!) compressed spring. When the two spring apart, conservation of momentum tells us the Center of Mass remains where it was (or moving as it was).
PTot,i = p1i + p2i = 0 + 0 = 0
PTot,f = p1f + p2f = PTot,i = 0
p1f + p2f = - m1 v1f + m2 v2f = 0
Hey there Evan!
Let's remember, these are (light waves). So, we you learn about waves, you would remember that when light does reach an end, they will most likely just (bounce back). That's all it would actually do.
I Hope this helps you!
Answer:
<em>709.5 cal</em>
<em></em>
Explanation:
masa m de la barra de aluminio = 100 g
temperatura ambiente = 27 ° C
<em>Asumiremos que la barra de aluminio está en equilibrio térmico con el ambiente.
</em>
Esto significa que la temperatura inicial de la barra es de 27 ° C
temperatura final a la que la barra debe calentarse = 60 ° C
el aumento de temperatura ΔT será
ΔT = 60 ° C - 27 ° C = 33 ° C
capacidad calorífica específica c del aluminio = 0.215 cal/g°C
Calor C requerido = mcΔT
<em>C = 100 x 0.215 x 33 = 709.5 cal</em>