Answer:
multiply by -3
Step-by-step explanation:
1/3 gives -3/3=-1
-1*-3=3
3*-3=-9
it defines the function f so that f(x)=-3x
To answer this
problem, we use the binomial distribution formula for probability:
P (x) = [n!
/ (n-x)! x!] p^x q^(n-x)
Where,
n = the
total number of test questions = 10
<span>x = the
total number of test questions to pass = >6</span>
p =
probability of success = 0.5
q =
probability of failure = 0.5
Given the
formula, let us calculate for the probabilities that the student will get at
least 6 correct questions by guessing.
P (6) = [10!
/ (4)! 6!] (0.5)^6 0.5^(4) = 0.205078
P (7) = [10!
/ (3)! 7!] (0.5)^7 0.5^(3) = 0.117188
P (8) = [10!
/ (2)! 8!] (0.5)^8 0.5^(2) = 0.043945
P (9) = [10!
/ (1)! 9!] (0.5)^9 0.5^(1) = 0.009766
P (10) = [10!
/ (0)! 10!] (0.5)^10 0.5^(0) = 0.000977
Total
Probability = 0.376953 = 0.38 = 38%
<span>There is a
38% chance the student will pass.</span>
Answer:
y+30
Step-by-step explanation:
the sum of the numbers is 15y
the new sum after increase each number by 30 is 15y+450
the new mean 15y+450/15
= y+30
9514 1404 393
Answer:
₹14000
Step-by-step explanation:
Let c represent the cost price, and m represent the marked price.
c × (1 +40%) = m
m × (1 -15%) - c = ₹1900
Using the first expression for m, the second equation becomes ...
1.40c×0.85 -c = ₹1900
0.19c = ₹1900
c = ₹1900/0.19 = ₹10000
Then the marked price was ...
m = 1.40c = 1.40×₹10000 = ₹14000
The marked price was ₹14000.
_____
The selling price was ₹11900.
Answer:
k=20.
Explanation: First we find where f(x) has its local extrema: f'(x)=3x2−10x+3. The critical points are roots of the equation: 3x2−10x+3=0.