Answer: The correct answer is D. 273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit.
Explanation:
Conversion of degree Celsius to Kelvin :
K=^oC+273
Conversion of degree Celsius to degrees Fahrenheit :
^oF=(\frac{9}{5}\times ^oC)+32
By using these two conversion factors, we get the three temperature readings all mean the same thing.
For option A :
K=^oC+273=100+273=373K
^oF=(\frac{9}{5}\times ^oC)+32=(\frac{9}{5}\times 100)+32=212^oF
For option B :
K=^oC+273=100+273=373K
^oF=(\frac{9}{5}\times ^oC)+32=(\frac{9}{5}\times 100)+32=212^oF
For option C :
K=^oC+273=0+273=273K
^oF=(\frac{9}{5}\times ^oC)+32=(\frac{9}{5}\times 0)+32=32^oF
For option D :
K=^oC+273=0+273=273K
^oF=(\frac{9}{5}\times ^oC)+32=(\frac{9}{5}\times 0)+32=32^oF
From the given options, only option (D) is correct.
Hence, the correct option is, (D) 273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit
Hope this helps!
Molality is one way of expressing concentration of a solute in a solution. It is expressed as the mole of solute per kilogram of the solvent. To calculate for the molality of the given solution, we need to convert the mass of solute into moles and divide it to the mass of the solvent.
Molality = 29.5 g glucose (1 mol / 180.16 g ) / .950 kg water
Molality = 0.1724 mol / kg
Blade resistance hair motion pull down
Use the Henderson-Hasselbach equation:
pH = pKa + log[base]/[acid]
pH = -log(1.7 x 10^-5) + log(0.590/0.130) = 5.43