<span>Determine the root-mean-square sped of CO2 molecules that have an average Kinetic Energy of 4.21x10^-21 J per molecule. Write your answer to 3 sig figs.
</span><span>
E = 1/2 m v^2
If you substitute into this formula, you will get out the root-mean-square speed.
If energy is Joules, the mass should be in kg, and the speed will be in m/s.
1 mol of CO2 is 44.0 g, or 4.40 x 10^1 g or 4.40 x 10^-2 kg.
If you divide this by Avagadro's constant, you will get the average mass of a CO2 molecule.
4.40 x 10^-2 kg / 6.02 x 10^23 = 7.31 x 10^-26 kg
So, if E = 1/2 mv^2
</span>v^2 = 2E/m = 2 (4.21x10^-21 J)/7.31 x 10^-26 kg = 115184.68
Take the square root of that, and you get the answer 339 m/s.
<span>The correct answer is neither attraction nor repulsion.</span>
<span>Kinetic Molecular Theory explains that gas particles are in constant motion and exhibit perfectly elastic collisions. The motion of gas particles is random, meaning that there are no attractive forces on each other or on their surroundings. When two particles collide, the total kinetic energy is conserved.</span>
Rubidium or strontium have larger a larger atomic radius since the further left on the periodic table you go, the larger the sizes of the atoms are. This trend can be explained through effective nuclear charge which explains how the further left and down you go, the less the atoms nucleus is able to pull in the electrons around it.<span />
The correct answer for this question is this one: "D. Hydrosphere"
There exists the same question with the choices and an attached imaged.These are the following choices:
<span>A. Biosphere
B. Cryosphere
C. Geosphere
D. Hydrosphere</span>
Hope this helps answer your question and have a nice day ahead.