When 100 photons of light pass through a sample and 64 photons are detected after the passage of light, the number of photons transmitted through the sample is 64.
This is based on the methods of calculating the absorbance of light, which is depicted as the higher the amount of light transmission, the lower the amount of light absorbed.
Thus, when 64 photons of light in 100 photons are detected, 64 photons are transmitted, and therefore, the number of photons absorbed is 36.
Hence, hypothetically, if 100 photons of light are transmitted, 0 photons of light will be absorbed.
Therefore, in this case, it is concluded that the correct answer is 64 photos.
Learn more here: brainly.com/question/20678715
Answer:
Mass = 4.6 g
Explanation:
Given data:
Number of molecules of sucrose = 8.1 ×10²¹ molecules
Mass of sucrose = ?
Solution:
First of all we will calculate the number of moles by using Avogadro number.
1 mole × 8.1 ×10²¹ molecules / 6.022×10²³ molecules
1.35 × 10⁻² mol
Mass of sucrose:
Mass = number of moles × molar mass
Molar mass = 342.3 g/mol
Mass = 1.35 × 10⁻² mol ×342.3 g/mol
Mass = 462.1 × 10⁻² g
Mass = 4.6 g
Drugs interfere with the way neurons send, receive, and process signals via neurotransmitters. Some drugs, such as marijuana and heroin, can activate neurons because their chemical structure mimics that of a natural neurotransmitter in the body. This allows the drugs to attach onto and activate the neurons. Although these drugs mimic the brain’s own chemicals, they don’t activate neurons in the same way as a natural neurotransmitter, and they lead to abnormal messages being sent through the network.
Other drugs, such as amphetamine or cocaine, can cause the neurons to release abnormally large amounts of natural neurotransmitters or prevent the normal recycling of these brain chemicals by interfering with transporters. This too amplifies or disrupts the normal communication between neurons.
The Answer is D: Reactor products charge huge batteries.