Isotope 1: 89.905 * 51.45 = 4625.61225 / 100 = 46.2561225
Isotope 2: 90.906 * 11.22 = 1019.96532 / 100 = 10.1996532
Isotope 3: 91.905 * 17.15 = 1576.17175 / 100 = 15.7617075
Isotope 4: 93.906 * 17.38 = 1632.08628 / 100 = 16.3208628
Isotope 5: 95.908 * 2.08 = 268.5424 / 100 = 2.685424
46.2561225 + 10.1996532 + 15.7617075 + 16.3208628 + 2.685424 = 91.22377
actual mass Zr = about 91.22
<span>A cation is an atom that loses a valence electron. When a valence electron is released there is one electron less to create a repulsive force. The loss of a repulsive force will allow the atom to pull tighter together. An anion would therefore be larger in size due to increased repulsion of the valence electrons.</span>
Add the change in temperature to your substance's original temperature to find its final heat. For example, if your water was initially at 24 degrees Celsius, its final temperature would be: 24 + 6, or 30 degrees Celsius.
I suspect that the pressure of this change is constant therefore
The equation is used from the combined gas law. (When pressure is constant both P's will cancel out P/P = 1)
V/T = V/T
Initial Change
Initially we have 2L at 20 degress what temperature will be at 1L.
2/20 = 1/T
0.1 = 1/T
0.1T = 1
T = 1/0.1
T = 10 degress celsius.
Hope this helps if you won't be able to understand what is the combined gas law just tell me :).