1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stealth61 [152]
3 years ago
12

100pt need help asap Give a real-world example of an energy transformation that uses two of the following forms of energy: chemi

cal, mechanical, nuclear, gravitational, radiant, electrical, thermal (heat), and/or sound
Physics
2 answers:
vazorg [7]3 years ago
6 0

I'm trying to think of something that will give you the biggest bang for your buck, meaning what would give you the most number of energy transformations in their use.

Wind energy uses those great big windmills that transform wind into electrical energy. The wind is caused by the sun (which has nuclear energy, light energy and the earth's rotation which is not related to the sun but is mechanical energy). To start with you use mechanical energy. That energy drives a generator that stores it's energy in a battery. You have changed electrical energy into chemical energy. The batteries, on a calm day take over and provide electrical energy that must be transported to the consumers using it. Proponents of wind energy say that it is pollution free. It's not exactly true. The batteries used have to be manufactured (not a clean industry) and when they wear out, they pollute the environment if they cannot be recharged with new battery plates and acid (chemical).

Added to which wind energy is very noisy (sound energy) which has been linked to serious diseases.


Anestetic [448]3 years ago
3 0

Answer:

ExpWind energy uses those great big windmills that transform wind into electrical energy. The wind is caused by the sun (which has nuclear energy, light energy and the earth's rotation which is not related to the sun but is mechanical energy). To start with you use mechanical energy. That energy drives a generator that stores it's energy in a battery. You have changed electrical energy into chemical energy. The batteries, on a calm day take over and provide electrical energy that must be transported to the consumers using it. Proponents of wind energy say that it is pollution free. It's not exactly true. The batteries used have to be manufactured (not a clean industry) and when they wear out, they pollute the environment if they cannot be recharged with new battery plates and acid (chemical).

You might be interested in
An electron is released a short distance above earth's surface. a second electron directly below it exerts an electrostatic forc
slamgirl [31]

The mass of an electron is 9.109 x 10⁻³¹ kg

The weight of the electron is (mass) x (g) =  8.926 x 10⁻³⁰ Newton

The charge on an electron is -1.602 x 10⁻¹⁹ Coulomb

The repelling force between the two electrons is (K · q₁ · q₂ / r²) =

(8.98755 x 10⁹ N-m²/C²) x (1.602 x 10⁻¹⁹ C)² / D²

In order for the bottom one to just exactly hold the top one up at a distance 'D', the repelling force has to be exactly equal to the weight of the upper electron.

8.926 x 10⁻³⁰ N = (8.98755 x 10⁹ N-m²/C²)·(1.602 x 10⁻¹⁹ C)² / D²

We have to solve THAT ugly mess for ' D '.

Clean up the units first:

Cancel the C² on the right side, then divide each side by Newton:

8.926 x 10⁻³⁰ = (8.98755 x 10⁹ m²) x (1.602 x 10⁻¹⁹)² / D²

Now, let's multiply both sides by (D² x 10²⁹) :

D² x 8.926 x 10⁻¹ = (8.98755 m²) x (1.602)²

Divide each side by (0.8926):

D² = (8.98755 x 1.602²) / (0.8926)  meter²

D² = 25.84 m²

Take the square root of each side:

<em>D = 5.08 meters</em>

I am shocked, impressed, and amazed !

Are you shocked, impressed, or amazed ?

3 0
3 years ago
Anna Litical analyzes the force between a planet and its moon, varying the mass of
Travka [436]

Answer:

Trial 1 is the largest, trial 3 is the smallest

Explanation:

Given:

<em>Trial 1</em>

M₁ = 6·10²² kg

d₁ = 3 500 km = 3.5·10⁶ м

<em>Trial  2</em>

M₂ = 6·10²² kg

d₂ = 7 000 km = 7·10⁶ м

<em>Trial  3</em>

M₃ = 3·10²² kg

d₃ = 7 000 km = 7·10⁶ м

___________

F - ?

Gravitational force:

F₁ = G·m·M₁ / d₁² = m·6.67·10⁻¹¹·6·10²² / (3.5·10⁶)² = 0.37·m  (N)

F₂ = G·m·M₂ / d₂² = m·6.67·10⁻¹¹·6·10²² / (7·10⁶)² = 0.08·m  (N)

F₃ = G·m·M₃ / d₃² = m·6.67·10⁻¹¹·3·10²² / (7·10⁶)² = 0.04·m  (N)

Trial 1 is the largest, trial 3 is the smallest

5 0
8 months ago
initially, a bowl holds 15 m^3 of water. an object is dropped into the bowl and the new volume of the water is 25 m^3. what is t
marusya05 [52]

Explanation:

The new volume of water = 25 ml

The old volume of water = 15 ml

The difference = 25 - 15 but what are the units?

Since the question asks for force, the units must start out as 10 mL

In water 1 mL has a mass of 1 gram, so the answer is 10 grams.

Grams are units of mass, not weight. You should convert this into newtons.

10 grams = 1/1000 = 0.01 kg

1 kg has a weight of 9.81 Newtons

0.01 kg has a weight 0.081 Newtons

If you have never seen a Newton before, then the answer is 10 grams

3 0
3 years ago
A 5-kg ball collides inelastically head-on with a 10-kg ball, which is initially stationary. Which of the following statements i
NARA [144]

Answer:

The magnitude of the change of velocity the 5-kg ball experiences is less than that of the 10-kg ball.

Explanation:

In inelastic collision, the total momentum is always conserved after collision but the kinetic energy is reduced.

Momentum is Mass X velocity.

5 kg ball is in motion, while 10 kg ball is stationary; that is zero velocity.

The momentum of 10 kg ball before collision is zero while the momentum of 5 kg ball before collision is more than zero. Therefore, the magnitude of change in momentum will not be equal.

Next possible options are in kinetic Energy

Initial Kinetic energy = \frac{1}{2}mu^2

Final kinetic energy =\frac{1}{2}mv^2

Change in kinetic energy = Final Kinetic Energy - Initial Kinetic Energy

Change in kinetic energy of 5kg ball = \frac{1}{2}mv^2 -\frac{1}{2}mu^2 = \frac{1}{2}m(v-u)^2

Since the 5-kg ball has initial velocity (u), the magnitude of the change in velocity will be reduced.

Change in kinetic energy of 10kg ball:

the ball is initially at rest, therefore the initial velocity (u) will be zero (0)

Δ K.E = \frac{1}{2}mv^2 -\frac{1}{2}mu^2 = \frac{1}{2}m(v-u)^2 = \frac{1}{2}m(v-0)^2 = \frac{1}{2}mv^2

From the solution above, the magnitude of the change in velocity experienced by 10 kg ball is higher than 5 kg ball.

Hence, The magnitude of the change of velocity the 5-kg ball experiences is less than that of the 10-kg ball

4 0
3 years ago
What is a consequence of the second law of thermodynamics?
marshall27 [118]

Answer:Increase in the entropy of the universe are the result of chemical reactions

Explanation:

The second law tells about the quality of energy such that any isolated system tends to become more disordered. Any natural Process occurring on its own is irreversible and entropy is increasing for that process.  

The entropy of the Universe is increasing which is the result of chemical reactions. Any chemical reaction which increases the number of gas molecules will generate more entropy. Entropy in simple meaning is the order of randomness.

4 0
3 years ago
Other questions:
  • The SI system uses three base units. Question 6 options: True False
    5·1 answer
  • One observer stand on a train moving at a constant speed, and one observer stands at rest on the ground. The person on the train
    12·1 answer
  • 1. Charges acquired by rubbing is called_____
    15·2 answers
  • If sonic the hedgehog runs 40 meters in 5 seconds, what is his speed?
    9·1 answer
  • A bowling ball traveling with constant speed hits the pins at the end of a bowling lane 16.5 m long. The bowler hears the sound
    7·1 answer
  • What is the kinetic energy of a 1.40 kg discus with a speed of 22.5 m/s?
    15·1 answer
  • The spherical side mirror on a car is convex and has a radius of curvature of 25 cm. Another car is following, 20 m behind the m
    6·1 answer
  • A uniform steel rod of cross-sectional area A is attached to rigid supports and is unstressed at a temperature of 458F. The stee
    13·2 answers
  • The specific weight of sea water is 10.1 kN/m^3. Convert to lbs/in^3.
    8·1 answer
  • D. A bargain hunter purchases a "gold" crown at a flea market. After she gets home, she hangs it from a scale and finds its weig
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!