1 molecule of NH3 has 3 atoms of H.
6.90*10²⁴ molecules NH3 have 3*6.90*10²⁴ =20.7*10²⁴ atoms H=2.07*10²⁵ atoms H
1 molecule H2O of has 2 atoms of H.
2.60*10²⁵ molecules of H2O have 2*2.60*10²⁵ =5.20 *10²⁵ atoms of H
2.07*10²⁵ + 5.20 *10²⁵ =7.27*10²⁵ atoms of H altogether.
Are found along volcanic island arcs
Answer: mole fraction of methanol = 0.590
mole fraction of ethanol = 0.410
Explanation:
We are given:
Equal masses of methanol
and ethanol
are mixed.
let the mass be x g.
Calculating the moles of methanol in the solution, by using the equation:

Calculating the moles of ethanol in the solution, by using the equation:

To calculate the mole fraction of methanol, we use the equation:


To calculate the mole fraction of ethanol, we use the equation:


Thus mole fraction of methanol is 0.590 and mole fraction of ethanol 0.410 in three significant figures.
Answer:
Explanation:
You should allow the solvent to drop to the level of the adsorvent, so it would never run dry.
When you let your sample to run dry it will never finish to flow from the adsorbent depending of it polarity.
Water should not be used because it can dissolve the adsorbent.
You could use another technique to identify the compound, as an infrared or a ultraviolet detector. You can also, if you know the compounds, identify it for the retention time, for example, if you need to detect two compounds, one more polar than the other, and use a polar adsorbent and a non-polar solvent, the first compound to exit the column will be the less polar one, because it will have a bigger interaction with the solvent than the stationary phase (adsorbent) and will go faster, the second will be the more polar one, because it will have a bigger interaction with the stationary phase.
The answer is Hydrogen bonds