Answer:
Colors of transition metal compounds are due to two types of electronic transitions. Due to the presence of unpaired d electrons, transition metals can form paramagnetic compounds. Transition metals are conductors of electricity, possess high density and high melting and boiling points.
Explanation:
Answer:
glucose
Explanation:
There are two types of respiration:
1. Aerobic respiration
2. Anaerobic respiration
Aerobic respiration:
It is the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
Anaerobic Respiration:
It is the breakdown of glucose molecule in the absence of oxygen and produce small amount of energy. Alcohol or lactic acid and carbon dioxide are also produced as byproducts.
Glucose→ lactic acid/alcohol + 2ATP + carbon dioxide
This process use respiratory electron transport chain as electron acceptor instead of oxygen. It is mostly occur in prokaryotes. Its main advantage is that it produce energy (ATP) very quickly as compared to aerobic respiration.
Steps involve in anaerobic respiration are:
Glycolysis:
Glycolysis is the first step of both aerobic and anaerobic respiration. It involve the breakdown of one glucose molecule into pyruvate and 2ATP.
Fermentation:
The second step of anaerobic respiration is fermentation. It involve the fermentation of pyruvate into lactic acid or alcohol depending upon the organism in which it is taking place. There is no ATP produced in this step, however carbon dioxide is released.
There are 11 Carbon atoms in the compound.
<u>Solution:</u>
Carbon atom count is the ratio of the M peak to the M+1 peak.

Here M peak is 57.10% and M+1 peak is 6.83%. On applying the values in the formula we get,

Therefore, the number of Carbon atoms in the compound are 11.
Refer the image attached below for a better understanding of M peak and M+1 peak.
The heaviest ion that has the greatest m/z value is said to be the molecular ion peak in mass spectrum.
Different elements produce different colors of light when heated because the electrons in these elements have different permissible energy levels. When an element is heated, the electrons inside it become excited and move to an higher energy level from the ground state. When the electrons drop from this higher energy level, they typically emit energy quantum, the color of the light that is observed at this stage depends on difference that exist in the two energy levels.<span />
Answer:
synergistic
Explanation:
Synergistic means: relating to the interaction or cooperation of two or more organizations, substances, or other agents to produce a combined effect greater than the sum of their separate effects