<u>Answer:</u> The average atomic mass of copper is 63.55 amu.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
- <u>For
isotope:</u>
Mass of
isotope = 62.94 amu
Percentage abundance of
= 69.17 %
Fractional abundance of
isotope = 0.6917
- <u>For
isotope:</u>
Mass of
isotope = 64.93 amu
Percentage abundance of
= 30.83 %
Fractional abundance of
isotope = 0.3083
Putting values in equation 1, we get:
![\text{Average atomic mass of Copper}=[(62.94\times 0.6917)+(64.93\times 0.3083)]\\\\\text{Average atomic mass of copper}=63.55amu](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20atomic%20mass%20of%20Copper%7D%3D%5B%2862.94%5Ctimes%200.6917%29%2B%2864.93%5Ctimes%200.3083%29%5D%5C%5C%5C%5C%5Ctext%7BAverage%20atomic%20mass%20of%20copper%7D%3D63.55amu)
Hence, the average atomic mass of copper is 63.55 amu.
It would be most likely to be found in carbohydrates
Answer:
See balanced equations below
Explanation:
1. Mg(s) +2 HCL (aq) →MgCl₂ (aq) +H₂(g)
This is a single replacement reaction, involving an acid with a metal
2. 2Al(s) + 3H₂SO₄ (aq)→Al₂(SO₄)₃(aq) + 3H₂
3. 3 Zn (s) + 2H₃PO₄(aq)→ Zn₃(PO₄)₂ (aq) + 3H₂ (g)
4. 2Al(s) + 6HCL (aq)→2AlCl₃(aq) +3H₂ (g)
B.
1. 2KOH(aq) + MgCl₂→Mg(OH)₂ (aq) + 2KCl (aq)
2. 3NaOH (aq)+ Al(NO₃)₃ (aq)→Al(OH)₃(s) + 3 NaNO₃(aq) ---this is a precipitation reaction
3. BaBr₂(aq) + H₂SO₄→BaSO₄ (s) + 2Br⁻(aq)
4. Na₂S + 2HCl → 2NaCl (aq) + H₂S (g)
5. 3CaCl₂ +2K₃PO₄→ Ca₃(PO₄)₂+6KCl
6.Ba(NO₃)₂ + (NH₄)₂CO₃→ 2(NH₄)⁺(aq) +BaCO₃(s)
I think the correct answer is the third option. Particulates are solid or liquid particles that settle after being dispersed in a gas. They are also termed as particle pollution or PM. It is a mixture of very small particles and liquid droplets which includes acids of nitrates and sulfates, organic substance, metals and dust particles.
<h3><u>Answer;</u></h3>
10 percent
<h3><u>Explanation;</u></h3>
- Probability is a number that describes how likely it is that an event will occur.
- In this case; If each of 10 events is equally likely to occur, the probability of each individual event occurring is 1/10.
- Therefore; as a percentage;
1/10 × 100 = 10 percent
- Hence; The probability of each individual event occurring is 10 percent