Answer:
2 /s north
Explanation:
Given that,
Velocity due North is 8 m/s and due south is 6 m/s
We need to find the magnitude and the direction of the resulting velocity.
Let North is positive and South is negative. When two velocities are in opposite direction, they adds up. So,

It is positive. So, it is in North direction.
Answer:
Best explains Jamming
Explanation:
<em>The deliberate radiation of electromagnetic (EM) energy to degrade or neutralize the radio frequency long-haul supervisory control and data acquisition (SCADA) communications links, best explains what?</em>
Jamming is defined as the blocking or interference with authorized wireless communications. it's a problem in personal area network wireless technologies. Jamming can occur inadvertently due to high levels of noise .
Jammers can send radio signals to interfere or disrupt communication flows by by decreasing the signal-to-noise ratio.They use radio frequency to interfere with communications by keeping it busy.
Answer:
<em>The distance covered by comet is </em>
Explanation:
Speed is defined as the rate of change of distance with time. It is given by the equation speed= 
Thus distance= 
In this problem it is given that speed of comet= 
time travelled by the comet= 4 hours
Thus distance= 
= 
= 
Answer:
600m
Explanation:
30×20 at a constant speed is 600m.
To solve this problem it is necessary to apply the kinematic equations of angular motion.
Torque from the rotational movement is defined as

where
I = Moment of inertia
For a disk
Angular acceleration
The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

Where
Final and Initial Angular velocity
Angular acceleration
Angular displacement
Our values are given as






Using the expression of angular acceleration we can find the to then find the torque, that is,




With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so




Therefore the torque exerted on it is 