Answer:
1. 3.70 g Na₂CO₃·10H₂O
2. 50.0 mL of the first solution
Explanation:
1. Prepare the solution
(a) Calculate the molar mass of Na₂CO₃·10H₂O

The molar mass of Na₂CO₃·10H₂O is 286.15 g/mol.
(b) Calculate the moles of Na₂CO₃·10H₂O

(c) Calculate the mass of Na₂CO₃·10H₂O

2. Dilute the solution
We can use the dilution formula to calculate the volume needed.
V₁c₁ = V₂c₂
Data:
V₁ = ?; c₁ = 0.0500 mol·L⁻¹
V₂ = 100 mL; c₂ = 0.0250 mol·L⁻¹
Calculation:

Answer:
I believe the answer The case study was influenced by bias, and led to incorrect conclusions being drawn. plz correct me if I am wrong
Explanation:
<span>A SI base unit is the single and direct measurement unit for a physical entity. E.g. For mass it is kg, for time it is sec, A derived unit is determined by a physical equation with the base units, like for velocity equals distance divided by time, in SI units: unit of v (velocity)= m (meter) divided by sec (seconds).
Hope this helps!</span>
Answer:
the molarity of NaOH is 1.10. And the molarity of HCl is 1.10. And the initial Temp=0.50(°c). and The final Temp= 1.10(°c)