Answer:
a.) -147V
b.) -120V
c.) 51V
Explanation:
a.) Equation for potential difference is the integral of the electrical field from a to b for the voltage V_ba = V(b)-V(a).
b.) The problem becomes easier to solve if you draw out the circuit. Since potential at Q is 0, then Q is at ground. So voltage across V_MQ is the same as potential at V_M.
c.) Same process as part b. Draw out the circuit and you'll see that the potential a point V_N is the same as the voltage across V_NP added with the 2V from the other box.
Honestly, these things take practice to get used to. It's really hard to explain this.
Answer:
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
Explanation:
We are given;
T∞ = 70°C.
Inner radii pipe; r1 = 6cm = 0.06 m
Outer radii of pipe;r2 = 6.5cm=0.065 m
Electrical heat power; Q'_s = 300 W
Since power is 300 W per metre length, then; L = 1 m
Now, to the heat flux at the surface of the wire is given by the formula;
q'_s = Q'_s/A
Where A is area = 2πrL
We'll use r2 = 0.065 m
A = 2π(0.065) × 1 = 0.13π
Thus;
q'_s = 300/0.13π
q'_s = 734.56 W/m²
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
The application of electro bioengineering uses principles of nick and computer science to design products is application of electrical engineering principles to biology, medicine, conduct, or health.
<h3>What is Bioelectronics?</h3>
- Bioelectronics is the application of electrical engineering principles to biology, medicine, conduct, or health.
- It advances the fundamental concepts, creates knowledge for the molecular to the organ techniques levels, and develops creative devices or methods for the deterrence, diagnosis, and treatment of disease, for patient rehabilitation, and for improving health.
- Bio electromagnetics, instrumentation, neural networks, robotics, and detector technologies are some of the disciplines necessary to develop new knowledge and creations in this area.
- A keystone of this research area is the building of and real-world devices and systems.
- Onsite facilities for prototyping and testing instrumentation systems, fabricating and measuring the performance of implantable devices, and making robotic prostheses, are readily available.
- New detectors and sensor arrays are microfabricated in a 2,000 sq ft cleanroom.
To learn more about Bioelectronics, refer to:
brainly.com/question/21819443
#SPJ4
Answer:
Student A
Explanation:
hope this helps have a great day
Answer: if most people are driving the way that you are
Explanation:the law of the many