1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ratling [72]
3 years ago
5

What is the degree measure of the angle –15π÷2​

Mathematics
1 answer:
pantera1 [17]3 years ago
8 0

9514 1404 393

Answer:

  -1350°

Step-by-step explanation:

π radians is 180°, so you have ...

  -15(180°)/2 = -1350°

You might be interested in
Yes or no 2 problems below giving brainlest
astra-53 [7]

Answer:

Problem 13: yes

Problem 14: no

Step-by-step explanation:

Problem 13:

Plug the values of x and y to solve.

-23 = -7(5) + 12

-23 = -35 + 12

-23 = -23

The values are equal, so the coordinates <u>do</u> solve the equation. It's a yes.

-----------------------------------------------------------------------

Problem 14:

Plug the values of x and y to solve.

-9 = -7(-3) + 12

-9 = 21 + 12

-9 = 33

The values are not equal, so the coordinates <u>do not</u> solve the equation. It's a no.

hope this helps :)

8 0
3 years ago
Khairul deposited $ 600 in a bank at the end of 2010 and another $ 400 in the same bank at the end of 2011. The bank offers simp
castortr0y [4]

Answer:

bat puro math pede history lng

5 0
3 years ago
Solve the above que no. 55
aleksandr82 [10.1K]

Answer:

Let \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right), we proceed to prove the trigonometric expression by trigonometric identity:

1) \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right) Given

2) \left(1+\frac{\cos^{2}A}{\sin^{2}A} \right)\cdot \left(1+\frac{\sin^{2}A}{\cos^{2}A} \right)   \tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A}

3) \left(\frac{\sin^{2}A+\cos^{2}A}{\sin^{2}A} \right)\cdot \left(\frac{\cos^{2}A+\sin^{2}A}{\cos^{2}A} \right)    

4) \left(\frac{1}{\sin^{2}A} \right)\cdot \left(\frac{1}{\cos^{2}A} \right)    \sin^{2}A+\cos^{2}A = 1

5) \frac{1}{\sin^{2}A\cdot \cos^{2}A}

6) \frac{1}{\sin^{2}A\cdot (1-\sin^{2}A)}    \sin^{2}A+\cos^{2}A = 1

7) \frac{1}{\sin^{2}A-\sin^{4}A} Result

Step-by-step explanation:

Let \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right), we proceed to prove the trigonometric expression by trigonometric identity:

1) \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right) Given

2) \left(1+\frac{\cos^{2}A}{\sin^{2}A} \right)\cdot \left(1+\frac{\sin^{2}A}{\cos^{2}A} \right)   \tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A}

3) \left(\frac{\sin^{2}A+\cos^{2}A}{\sin^{2}A} \right)\cdot \left(\frac{\cos^{2}A+\sin^{2}A}{\cos^{2}A} \right)    

4) \left(\frac{1}{\sin^{2}A} \right)\cdot \left(\frac{1}{\cos^{2}A} \right)    \sin^{2}A+\cos^{2}A = 1

5) \frac{1}{\sin^{2}A\cdot \cos^{2}A}

6) \frac{1}{\sin^{2}A\cdot (1-\sin^{2}A)}    \sin^{2}A+\cos^{2}A = 1

7) \frac{1}{\sin^{2}A-\sin^{4}A} Result

4 0
3 years ago
What is greater than 0.05 and less than 0.06
lisabon 2012 [21]
Numbers that can be greater than .05 and less than .06 is .051 through .059 due to its place value.
3 0
3 years ago
Leonard used 2/7 of his pay check to pay his cell phone bill and put 1/3 of his paycheck in savings
Nata [24]
There is no question here.
4 0
3 years ago
Other questions:
  • Find the slope of the line shown​
    7·1 answer
  • A high school athletic department bought 40 soccer uniforms at a cost of $4,000. After soccer season, they returned some of the
    10·2 answers
  • HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 20 POINTS!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    5·2 answers
  • Helpppppppp me plzzzzzzz
    12·1 answer
  • If a = 5, what is the value of a-3?​
    13·2 answers
  • WILL GIVE BRAINLIEST!!!!!!1
    6·2 answers
  • c) The shoe store’s clerks are paid on commission. If the clerk receives a 12% commission on total purchase amounts before tax i
    15·2 answers
  • If the point (5, k) lies on the line represented by the equation 2x + y = 9, the value of k is: (A.REI.10) a. 1 b. 2 c. -1 d. -2
    13·1 answer
  • ♦♦Will mark brainliest♦♦
    9·2 answers
  • Solve for x. Round to the nearest tenth, if necessary.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!