The first question's answer is :
If, F=ma
Then, 15N= 2.1kg (a)
15/2.1=a
7.14=a
Therefore, acceleration = 7.14m/s^2
sorry I am not sure about the second question :-(
Answer:
Option A. 39.2 m/s
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 4 s
Final velocity (v) =?
v = u + gt
Since the initial velocity (u) is 0, the above equation becomes:
v = gt
Thus, inputting the value of g and t, we can obtain the value of v as shown below:
v = 9.8 × 4
v = 39.2 m/s
Therefore, the velocity of the ball at 4 s is 39.2 m/s.
Answer:
a) P1=100kpa
V1=6m³
V2=?
P2=50kpa
rearranging mathematically the expression for Boyle's law
V2=(P1V1)/P2=(100×6)/50=12m³
b) same apartment as in (a) but only the value of P2 changes
=> V2=(100×6)/40=15m³
Explanation:
since temperature is not changing we use Boyle's law. mathematically expressed as P1V1=P2V2
Answer:
The law of conservation of energy can be seen in these everyday examples of energy transference: Water can produce electricity. Water falls from the sky, converting potential energy to kinetic energy. ... The cue ball loses energy because the energy it had has been transferred to the 8 ball, so the cue ball slows down.
In order to calculate the angle, we can use the formula below for a constructive interference (the interference is constructive because the fringe is bright):
Where d is the distance between the slits, m is the order of the interference and lambda is the wavelength.
So, using d = 8.25 * 10^-5, m = 2 and lambda = 4.5 * 10^-7, we have:
Therefore the correct option is the second one.