Increases exponentially is your correct answer
Answer:
The bottom of the sea is 25 m below sea level.
Explanation:
Given data
Mass = 6.1 × 

We know that Buoyant force on the tank is equal to gravity force of the tank.



1020 ×
= 6.1 × 
= 598039.21 
We know that
= W × L × H
598039.21 = 300 × 80 × H
H = 25 m
Therefore the bottom of the sea is 25 m below sea level.
The springs stored energy is transferred to the cube as kinetic energy and then by the slop the KE is converted to height energy.
<span>0.5 . k . x^2 = 0.5 . m . v^2 = m . g . ∆h </span>
<span>0.5 . 50 . (0.1^2) = 0.05 . 9.8 . ∆h </span>
<span>∆h = 0.51 m = 51 cm </span>
<span>This is the height gained </span>
<span>Distance along the slope = ∆h / sin 60 = 0.589 = 59 cm </span>
<span>In the second case, the stored spring energy is converted into height energy AND frictional heat energy. </span>
<span>The height energy is m . g . d sin 60 where d is the distance the cube moves along the slope. </span>
<span>The Frictional energy converted is F . d </span>
<span>F ( the frictional force ) = µ . N </span>
<span>N ( the reaction to the component of the gravity force perpendicular to the surface of the slope ) = m . g . cos60 </span>
<span>Total energy converted </span>
<span>0.5 . k . x^2 = (m . g . dsin60) + (µ . m . g . cos60 . d ) </span>
<span>Solve for d </span>
<span>d = 0.528 = 53 cm</span>
Explanation:
At the instant of release there is no force but an acceleration of a, this means the ball is falling freely under the force of gravity. Then the acceleration would be due to force of gravity and acceleration a = g =9.81 m/s^2.
g= acceleration due to gravity