Answer: a) vcar= 7 m/s ; b) a train= 0.65 m/s^2
Explanation: By using the kinematic equation for the car and the train we can determine the above values of the car velocity and the acceletarion of the train, respectively.
We have for the car
distance = v car* t, considering the length of train (81.1 m) travel by the car during the first 11.6 s
the v car = distance/time= 81.1 m/11.6s= 7 m/s
In order to calculate the acceleration we have to use the kinematic equation for the train from the rest
distance train = (a* t^2)/2
distance train : distance travel by the car at constant speed
so distance train= (vcar*36.35)m=421 m
the a traiin= (2* 421 m)/(36s)^2=0.65 m/s^2
Answer:
Its diameter increases as it flows down from the pipe. Assuming laminar flow for the water, then Bernoulli's equation can be applied.
P1-P2 + (rho)g(h1 - h2) + 1/2(rho)(v1² - v2²) = 0
Explanation:
P1 = P2 = atmospheric pressure so, P1 - P2 = 0
h1 is greater than h2 so h1-h2 is positive. Rearranging the equation above 2{ (rho)g(h1-h2) + 1/2(rho)v1²}/rho = v2²
From the continuity equation for fluids
A1v1 = A2v2
v2 = A1v1/A2
Substituting into the equation above
(A1v1/A2)² = 2{ (rho)g(h1-h2) + 1/2(rho)v1²}/rho
Making A2² the subject of the formula,
A2² = (A1v1)²× rho/(2{ (rho)g(h1-h2) + 1/2(rho)v1²}
The denominator will be greater than the numerator and as a result the diameter of the flowing stream decreases.
Thank you for reading.
Answer:
a
Explanation:
it explains the most, and it is the correct theorem
Answer:
False. This is because ellipses have 2 focus points and not only one.