1.) because then people can evacuate the area in the path<span> of the hurricane.
2.) </span><span>At higher altitudes, water vapor starts to condense into clouds and rain, releasing heat that warms the surrounding air, Which makes it rise as well. Warmer waters feed more energetic storms.
3.) </span> <span>A hurricane starts off as a series of thunderstorms which intensify as it moves over the warm and humid sea. The humidity is at a constant level and so it continues to grow over the sea. Any kind of decrease or increase in humidity can change the strength of a hurricane.
4.) </span><span>Actually, tropical cyclones need weak winds. If the atmospheric winds are even remotely strong, they will act to cut back the system and prevent the convection from wrapping around the center.
</span><span>Annndd...
5.) That hard to tell, it could be too much. Though I am going to go with yes. Cyclones need weak winds and good amount humidity.</span><span>
</span>
Their atomic number?? (easy guess)
Answer:
Weight is a force.
Explanation:
Force acting on an object is defined in terms of mass and its acceleration. Its mathematical force is given by
F = ma
Weight of an object is force that the Earth exerts on an object. It can be given by the formula as follows :
W = mg
g is acceleration due to gravity on the surface of earth
Hence, the correct option is (d).
Answer:
157.9 kg
Explanation:
Density: This can be defined as the ratio of the mass of a body and it's volume.
The S.I unit of density is kg/m³.
From the question,
Density = Mass/volume
D = m/v............................ Equation 1
Where D = Density of gold, m = mass of gold, v = volume of gold.
make m the subject of the equation
m = Dv.................... Equation 2
Since the gold is a cube,
v = l³................... Equation 3
Where l = length of the gold cube.
Substitute equation 3 into equation 2
m = Dl³............... Equation 4
Given: D = 19300 kg/m³, l = 0.2015 m
Substitute into equation 4
m = 19300(0.2015)³
m = 157.9 kg.
Answer:
(a) 328 Nm
(b) 79.35 Nm
Explanation:
N = =150, side = 17.5 cm = 0.175 m, i = 42 A, B = 1.7 T
A = side^2 = 0.175^2 = 0.030625 m^2
(a) Torque = N x i x A x B x Sinθ
For maximum torque, θ = 90 degree
Torque = 150 x 42 x 0.030625 x 1.7 x Sin 90
Torque = 328 Nm
(b) θ = 14 degree
Torque = 150 x 42 x 0.030625 x 1.7 x Sin 14
Torque = 79.35 Nm